

Stable Isotope-Labeled Mixtures, Sets, and Kits

For Mass Spectrometric Applications

Table of Contents

Mixtures and Sets

ass-Specific Mixes
Amino Acid Mixes and Sets
Bile Acid Mixes
Carnitine/Acylcarnitine Mixes and Sets
Fatty Acid/Lipid Mixes
Nucleic Acid Sets12
Organic Acid Mixes
Other Mixes
Steroid Mixes and Sets

Pathway-Specific Mixes	
TCA Mixes and Sets	22
Kits	
Metabolomic QC Kits	24
Extract Kits	29
IROA® Biochemical Quantitation Kits	36
PeptiQuant™ Plus Assay Kits	38
INLIGHT® Glycan Tagging Kit	41
Q&As	42

Please visit **isotope.com** for pricing and availability.

For research use only. Not for use in diagnostic procedures.

The global and targeted measurement of biomolecules continues to be two areas of growing focus in analytical chemistry and biomedicine. Drivers for this research include efforts to better understand the underlying mechanisms of disease pathogenesis and to improve precision medicine through the qualitative/quantitative screening of candidate biomarkers. To address these objectives, mass spectrometry (MS)-based approaches are increasingly utilized and have been aided by advancements in experimental methodologies, instrumentation technologies, and bioinformatic tools.

To help advance research in MS 'omics and MS/MS screening, Cambridge Isotope Laboratories, Inc. (CIL) is pleased to offer the largest variety of stable isotope-labeled sets, mixtures, and kits. The mixes are formulated neat and/or as solutions and are readily available for immediate use. In addition to the packaged mix(es), the kits include a user manual and shipping documents (e.g., certificate of analysis, safety data sheet). The manual outlines general procedures and processing examples for user reference, as well as troubleshooting notes and analysis results. Please see isotope.com for product details, pricing, and to inquire about customized mixes.

Benefits

- easy to implement
- offers end user flexibility
- reduces development time and cost
- enhances data quality
- improves reproducibility
- renders confidence in analytical results

Features Overview

- mixes supplied in neat and/or solution form
- preferentially ¹³C- and/or ¹⁵N-enriched
- site-specific or uniform labeling
- established specification guidelines
- procedural guides in kit manuals
- broad-spanning applications (from QC to quantification)

Mixtures and Sets

The mixtures available off-the-shelf are class- or pathway-specific for 'omics and MS/MS screening applications. These mixes are amenable for use in quality control and qualification/quantification exercises using targeted, semi-targeted, or untargeted MS-based methodologies. Outlined below is an overview of our current mix offerings, as well as details into their compositions and usage specifications (i.e., reconstitution guidelines, storage, and stability). For reference purposes, example results and published manuscripts are also provided.

Class-Specific Mixes Amino Acid Mixes and Sets

Amino acids (AAs) play critical roles in biological functions as both building blocks of peptides/proteins and intermediates of various metabolic pathways (e.g., citric acid cycle, urea cycle). These compounds are also reported to influence the pathogenesis and propagation of metabolic disorders/disease. To aid continued development and application, CIL has formulated a number of stable isotope-labeled (and unlabeled) AA mixtures. These include mixes of the canonical amino acids (MSK-A2 and MSK-CAA), the rare or unnatural non-canonical amino acids (MSK-NCAA), and a series of reference standard AA mixes (e.g., NSK-A).

Amino Acid Motures Amino Acid Motures The telectronic and Quantification The telectronic and Quanti

MS/MS Screening Mixtures and Standards

Click on the thumbnails or visit isotope.com/applications/ for

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
MSK-A2	Metabolomics Amino Acid Mix	17	1.2 mL
MSK-CAA	Canonical Amino Acid Mix	20	1 vial
MSK-NCAA	Non-canonical Amino Acid Mix	7	1 vial
NSK-AA3	3-Plex Amino Acid Standard Mix	3	1 vial, 10 vials
NSK-AA3-10X	3-Plex Amino Acid Standard Mix (10X)	3	1 vial, 10 vials
NSK-A	Amino Acid Standard Mix Set A	12	1 vial, 10 vials
NSK-A1	Amino Acid Standard Mix Set A1	12	1 vial, 10 vials
NSK-AB	Standard Mix Sets A and B	12 (in NSK-A), 8 (in NSK-B)	2 × 10 vials

MSK-A2 and MSK-CAA Mixes

Compositions

The A2 mix (in 0.1 M HCl) consists of 17 amino acids (in solution), and the CAA mix (dried down) comprises 20. Reconstituting the CAA mix in 1 mL solvent (e.g., water) results in 2.5 mM concentrations (exception: L-cystine at 1.25 mM). **Note:** This CAA mix should not be reconstituted in 0.1 M HCl as Asn and Gln are unstable in acid.

Compound	Abbrev.	Label and Enrichment	Conc. (mM)
L-Alanine	Ala	¹³ C ₃ , 99%; ¹⁵ N, 99%	2.5
L-Arginine·HCl	Arg	¹³ C ₆ , 99%; ¹⁵ N ₄ , 99%	2.5
L-Asparagine*	Asn	¹³ C ₄ , 99%; ¹⁵ N ₂ , 99%	2.5
L-Aspartic acid	Asp	¹³ C ₄ , 99%; ¹⁵ N, 99%	2.5
L-Cystine	Cys-Cys	¹³ C ₆ , 99%; ¹⁵ N ₂ , 99%	1.25
L-Glutamic acid	Glu	¹³ C ₅ , 99%; ¹⁵ N, 99%	2.5
L-Glutamine*	Gln	¹³ C ₅ , 99%; ¹⁵ N ₂ , 99%	2.5
Glycine	Gly	¹³ C ₂ , 99%; ¹⁵ N, 99%	2.5
L-Histidine·HCl	His	¹³ C ₆ , 97-99%; ¹⁵ N ₃ , 97-99%	2.5
L-Isoleucine	lle	¹³ C ₆ , 99%; ¹⁵ N, 99%	2.5
L-Leucine	Leu	¹³ C ₆ , 99%; ¹⁵ N, 99%	2.5
L-Lysine-2HCl	Lys	¹³ C ₆ , 99%; ¹⁵ N ₂ , 99%	2.5
L-Methionine	Met	¹³ C ₅ , 99%; ¹⁵ N, 99%	2.5
L-Phenylalanine	Phe	¹³ C ₉ , 99%; ¹⁵ N, 99%	2.5
L-Proline	Pro	¹³ C ₅ , 99%; ¹⁵ N, 99%	2.5
L-Serine	Ser	¹³ C ₃ , 99%; ¹⁵ N, 99%	2.5
L-Threonine	Thr	¹³ C ₄ , 97-99%; ¹⁵ N, 97-99%	2.5
L-Tryptophan*	Trp	¹³ C ₁₁ , 99%; ¹⁵ N ₂ , 99%	2.5
L-Tyrosine	Tyr	¹³ C ₉ , 99%; ¹⁵ N, 99%	2.5
L-Valine	Val	¹³ C ₅ , 99%; ¹⁵ N, 99%	2.5

^{*}Compounds absent in MSK-A2.

Companion unlabeled standard mixes and kits may be available; please inquire.

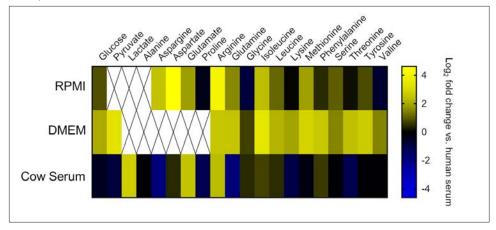


Figure. Application of the MSK-A2 mix to compare the quantitative profiles of cow serum and standard media (see PMID: 28826492 for additional information).

Example References

Fuenzalida, K.; Leal-Witt, M.J.; Guerrero, P.; et al. 2021. NTBC treatment monitoring in Chilean patients with tyrosinemia type 1 and its association with biochemical parameters and liver biomarkers. J Clin Med, 10(24), 5832-5845.

Gao, J.; Chung, T-S. 2021. Membranes made from nonsolvent-thermally induced phase separation (N-TIPS) for decellularization of blood in dry plasma spot (DPS) applications. Chem Eng Sci, 229. doi.org/10.1016/j.ces.2020.116010.

van Gastel, N.; Spinelli, J.B.; Sharda, A.; et al. 2020. Induction of a timed metabolic collapse to overcome cancer chemoresistance. Cell Metab, 32(3), 391-403.

Røst, L.M.; Thorfinnsdottir, L.B.; Kumar, K.; et al. 2020. Absolute quantification of the central carbon metabolome in eight commonly applied prokaryotic and eukaryotic model systems. Metabolites, 10(2), 74.

Alcock, R.D.; Shaw, G.C.; Tee, N.; et al. 2019. Plasma amino acid concentrations after the ingestion of dairy and collagen proteins, in healthy active males. Front Nutr, 6, 163. Sullivan, M.R; Danai, L.V.; Lewis, C.A.; et al. 2019. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife, 8, e44235.

Chen, W.W.; Freinkman, E.; Sabatini, D.M. 2017. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat Protoc, 12(10), 2215-2231.

Muir, A.; Danai, L.V.; Gui, D.Y.; et al. 2017. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife, 6, e27713.

MSK-NCAA Mix

Composition

Reconstituting the dried-down NCAA mix with 1 mL solvent (e.g., 1:1 v/v methanol:water) results in 2.5 mM concentrations for each compound.

Compound	Abbrev.	Label and Enrichment
β-Alanine	β-Ala	¹³ C ₃ , 98%; ¹⁵ N, 96-99%
L-Azidohomoalanine·HCl	hAHA	1,2,3,4- ¹³ C ₄ , 99%; 2,4- ¹⁵ N ₂ , 98%
L-Citrulline	Cit	1,2,3,4,5- ¹³ C ₅ , 98%
L-Dihydroxyphenylalanine	DOPA	1- ¹³ C, ring- ¹³ C ₆ , 99%
L-Homoarginine·HCl	Harg	¹³ C ₇ , 98%; ¹⁵ N ₄ , 98%
L-Ornithine·HCl	Orn	¹³ C ₅ , 98%
Sarcosine·HCl	Sar	¹³ C ₃ , 99%; ¹⁵ N, 98%

Usage Specifications

Mix Type	MSK-A2	MSK-CAA	MSK-NCAA	
Form	1.2 mL solution	dried	down	
Before reconstitution:				
Storage	-5 to 5°C; protect from light			
Recommended retest	2 years from date of manufacture			
Upon reconstitution:				
Storage	N/A	-5 to 5°C; pro	tect from light	
Recommended retest	N/A	4 weeks		

I use several of CIL's metabolomics mixes in my LC-MS analysis. They make quantitative metabolomic work convenient with a single internal standard mix spike and provide the corresponding unlabeled mix for absolute quantitation. The ready mixes save time from the tedious task of making up individual solutions of each analyte for quantitation. I find the different mixes applicable to a variety of analyses in complicated matrices that provide metabolic insight to my studies.

> - Andrew Downey Senior Scientist, Axcella Health Inc. (USA)

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

NSK-AA3 Mix

Composition

Reconstituting the AA3 mix in 1 mL of solvent (e.g., 50% acetonitrile) will produce the tabulated concentrations below. **Note**: NSK-AA3-10X has $10\times$ the specified concentrations.

Standard (Abbreviation)	Label and Enrichment	MW (Da)	Conc. (µM)	Structure
Creatine (Cre)	N-Methyl-D ₃ ; glycine-2,2-D ₂ , 99%	154.18	500	H ₂ N OH
Guanidinoacetic acid (GAA)	1,2- ¹³ C ₂ , 97-99%; 3- ¹⁵ N, 97-99% (CP 97%)	120.09	50	NH H₂N H OH
L-Proline (Pro)	D ₇ , 97-98%	122.17	500	D D D OH

Usage Specifications

Criteria	Recommendation		
Before reconstitution:		After reconstitution:*	
Storage	-5 to 5°C; protect from light	Storage	-20°C
Recommended retest	1 year from date of manufacture	Recommended retest	3 months

^{*}Represents minimum stability period when AA3 mix is reconstituted with 1:1 purified water:acetonitrile.

NSK-A Mix

Composition

Reconstituting a given NSK-A vial's contents in 1 mL of high-purity solvent (1:1 water:methanol recommended) will produce the tabulated concentrations below. To facilitate complete dissolution, it is recommended to vortex manually for 1 minute then auto-vortex for a minimum of 30 seconds. **Note:** A combined set of NSK-A and NSK-B – the carnitine/acylcarnitine reference standard mix – is also available (NSK-AB).

Compound	Abbrev.	Label and Enrichment	Conc. (µM)
L-Alanine	Ala	2,3,3,3-D ₄ , 98%	500
L-Arginine·HCl	Arg	5- ¹³ C, 99%; 4,4,5,5-D ₄ , 95%	500
L-Aspartatic acid	Asp	2,3,3-D ₃ , 98%	500
L-Citrulline	Cit	5,5-D ₂ , 98%	500
DL-Glutamic acid	Glu	2,4,4-D ₃ , 98%	500
Glycine	Gly	2- ¹³ C, 99%; ¹⁵ N, 98%	2500
L-Leucine	Leu	5,5,5-D ₃ , 99%	500
L-Methionine	Met	methyl-D ₃ , 98%	500
L-Ornithine·HCI*	Orn	5,5-D ₂ , 98%	500
L-Phenylalanine	Phe	ring- ¹³ C ₆ , 99%	500
L-Tyrosine	Tyr	ring- ¹³ C ₆ , 99%	500
L-Valine	Val	D ₈ , 98%	500

^{*}NSK-A1 contains Orn 3,3,4,4,5,5,- D_6 98% instead of 5,5- D_2 , 98%. The remaining components and concentrations are equivalent.

Usage Specifications

Criteria	Recommendation
No. of uses	960 samples/vial
Before reconstitution:	
Storage	≤25°C; protect from light
Recommended retest	4 years from date of manufacture
Upon reconstitution:	
Storage	5±3°C in a tightly sealed vial Note: Storing the sealed vial in a second sealed container helps maintain the integrity of the solution.
Recommended retest	4 weeks

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated.

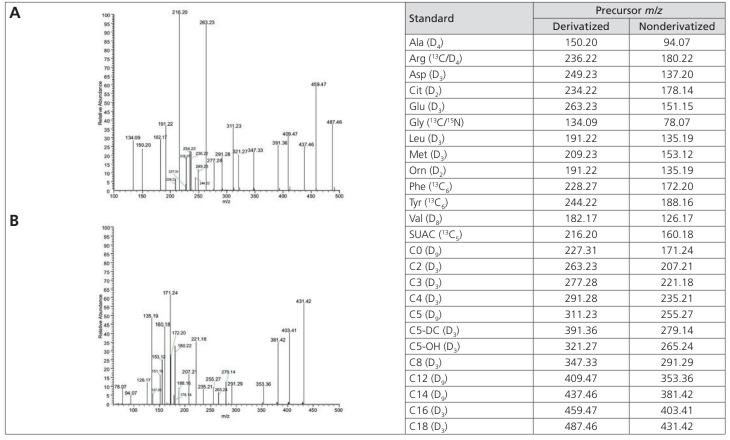


Figure. Full scan MS1 spectra of the DBS internal standards, with the derivatized standards shown in A and the nonderivatized in B. The standard mixture consists of stable isotope-labeled amino acids (NSK-A and -T) and carnitine/acylcarnitines (NSK-B and NSK-B-G). Please refer to Thermo Scientific technical note #73398 for method and application details.

Example References

Habib, A.; Azize, N.A.A.; Rahman, S.A.; et al. 2021. Novel mutations associated with carnitine-acylcarnitine translocase and carnitine palmitoyl transferase 2 deficiencies in Malaysia. Clin Biochem, 98, 48-53.

Zhang, S.; Li, X.; Luo, H.; et al. 2020. Role of aromatic amino acids in pathogeneses of diabetic nephropathy in Chinese patients with type 2 diabetes. J Diabetes Complications, 34(10), 107667.

Wang, L.; Liu, D.; Shen, H.; et al. 2020. Analysis of amino acid patterns with nutrition regimens in preterm infants with extrauterine growth retardation. Front Pediatr, 8, 184. Brennenstuhl, H.; Kohlmüller, D.; Gramer, G.; et al. 2020. High throughput newborn screening for aromatic L-amino-acid decarboxylase deficiency by analysis of concentrations of 3-O-methyldopa from dried blood spots. J Inherit Metab Dis, 43(3), 602-610.

Cao, Y-F.; Li , J.; Zhang, Z; et al. 2019. Plasma levels of amino acids related to urea cycle and risk of type 2 diabetes mellitus in Chinese adults. Front Endocrinol, 10, 50. Jing, F.; Hu, X.; Cao, Y.; et al. 2018. Discriminating gastric cancer and gastric ulcer using human plasma amino acid metabolic profile. UBMB Life, 70(6), 553-562.

Xie, X.; Kozak, M. 2020. Simultaneous analysis of amino acids, acylcarnitines, and succinylacetone in dried blood spots for research using nonderivatized and derivatized methods. (Thermo Scientific technical note #73398).

🖴 We have been using CIL's NSK-A and NSK-B reference standards in our LC-MS/MS method for newbom screening tests since 2001. From that time more than 4,000,000 newborns have been screened. The products maintain good stability after dissolution and the high analysis repeatability enabled us to stabilize their use as internal standards. We appreciate the high-quality products, timely deliveries, and excellent customer relations.

> – Mariusz Oltarzewski Head of Department of Screening Tests and Metabolic Diagnostics Institute of Mother and Child (Poland)

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Bile Acid Mixes

Bile acids (BAs) are steroid-like compounds that act as a detergent in the breakdown of fats. This family of compounds comprises primary BAs (synthesized in the liver) and secondary BAs (produced in the gut by bacteria). These are essential regulatory compounds that are involved in various metabolic processes (e.g., cholesterol and lipid metabolism) and signaling interactions (e.g., in glucose and energy homeostasis). Investigations into their synthesis/metabolism, disease linkage, and biomarker potential are examples of the type of research studies being undertaken. To aid further research and development efforts in this space, CIL has formulated stable isotope-labeled (and unlabeled) BA mixes. These dried-down mixes are constructed with the unconjugated BAs in one vial and the conjugated BAs in a second.

Metabolomics Bille Acid Mixtures for Qualification and Relating Quantification for Quantification and Relating Quantificatio

Click on the thumbnail or visit isotope.com/applications/ for

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
MSK-BA1	Bile Acid Standard Mix 1 – Unconjugated	6	1 vial
MSK-BA2	Bile Acid Standard Mix 2 – Conjugated	10	1 vial

Compositions

Reconstituting a given BA mix in 1 mL of solvent (e.g., 1:1 v/v methanol:water) yields a concentration of ~100 μM.

Unconjugated BA Mix (MSK-BA1)					
Compound	Abbrev.	Type of BA	Label and Enrichment	~Qty. (µg)	
Chenodeoxycholic acid	CDCA	Primary	2,2,4,4-D ₄ , 98%	40	
Cholic acid	CA	Primary	2,2,4,4-D ₄ , 98%	41	
Deoxycholic acid	DCA	Secondary	2,2,4,4-D ₄ , 98%	40	
Lithocholic acid	LCA	Secondary	2,2,4,4-D ₄ , 98%	38	
β-Muricholic acid	β-МСА	Primary	2,2,3,4,4-D ₅ , 99%	41	
Ursodeoxycholic acid	UDCA	Secondary	2,2,4,4-D ₄ , 98% (CP 95%)	40	

Conjugated BA Mix (MSK-BA2)				
Compound	Abbrev.	Type of BA	Label and Enrichment	~Qty. (µg)
Glycochenodeoxycholic acid	GCDCA	Primary	2,2,4,4-D ₄ , 98% (CP 97%)	45
Glycocholic acid	GCA	Primary	2,2,4,4-D ₄ , 98% (CP 96%)	47
Glycodeoxycholic acid	GDCA	Secondary	2,2,4,4-D ₄ , 98%	45
Glycolithocholic acid	GLCA	Secondary	2,2,4,4-D ₄ , 98%	44
Glycoursodeoxycholic acid	GUDCA	Secondary	2,2,4,4-D ₄ , 98% (CP 97%)	45
Taurochenodeoxycholic acid, sodium salt	TCDCA	Primary	2,2,4,4-D ₄ , 98% (CP 97%)	53
Taurocholic acid, sodium salt	TCA	Primary	2,2,4,4-D ₄ , 98%	54
Taurodeoxycholic acid, sodium salt	TDCA	Secondary	2,2,4,4-D ₄ , 98%	53
Taurolithocholic acid, sodium salt	TLCA	Secondary	2,2,4,4-D ₄ , 98%	51
Tauroursodeoxycholic acid, sodium salt	TUDCA	Secondary	2,2,4,4-D ₄ , 98%	53

Usage Specifications

Criteria	Recommendation	
Before reconstitution:		
Storage	-20°C; protect from light	
Recommended retest	2 years from date of manufacture	
After reconstitution:		
Storage	4°C	
Recommended retest	4 weeks	

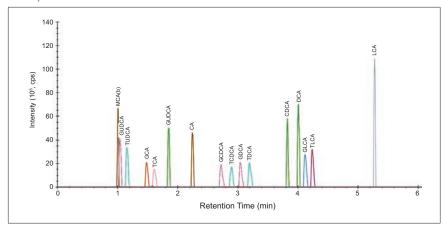


Figure. Chromatographic overview of a combined BA mix (6 unconjugates and 10 conjugates) analysis measured by RPLC-MS (Orbitrap ID-X, negative ESI). The m/z displayed are the [M-H]⁻ ions. Procedurally. the labeled/unlabeled BA mixes were reconstituted in 50% methanol before aliquot mixing and MS1 measurement. Note: The labeled and unlabeled BAs coeluted.

The materials that Cambridge Isotope Laboratories (CIL) supply are always of the highest quality in terms of chemical and isotopic purity. Recently, we have embarked on two new major research areas involving the analyses of bile acids (BAs) and per- and polyfluorinated alkylsubstances (PFAS). The standards/mixes from CIL that enable these, and other, projects are precisely what we have come to expect perfection!

- David C. Muddiman, PhD Jacob and Betty Belin Distinguished Professor, Department of Chemistry, North Carolina State University Director of Molecular Education, Technology, and Research Innovation Center (METRIC)

Carnitine/Acylcarnitine Mixes and Sets

Carnitine and acylcarnitines play an essential role in fatty acid metabolism. Metabolism disorders of fatty acid oxidation and several organic acidurias impose major clinical manifestations (e.g., hypoketotic hypoglycemia, skeletal myopathy, liver disease, and/or failure). These are largely attributed to enzymatic deficiencies and can be monitored through carnitine/acylcarnitine measurement. To aid MS/MS screening studies, CIL has formulated stable isotopelabeled (and unlabeled) standard carnitine/acylcarnitine mixes.

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
NSK-B	Carnitine/Acylcarnitine Standard Mix Set B	8	1 vial, 10 vials
NSK-B-G1	Carnitine/Acylcarnitine Standard Mix Supplement to NSK-B	5	1 vial, 10 vials
NSK-AB	Standard Mix Sets A and B	12 (in NSK-A), 8 (in NSK-B)	2 × 10 vials

Click on the thumbnail or visit isotope.com/applications/ for

In clinical chemistry-based applications of mass spectrometry, the first lesson the laboratory learns is the requisite nature of stable isotopeenriched standards for quantification of metabolites in biological fluids. In newborn screening of amino acids and acylcarnitines, Cambridge Isotope Laboratories, Inc., set the standard for quantification of these metabolites in dried blood spots. As research and development of the newborn screening analysis by mass spectrometry progressed, it was clear that a half dozen isotope-labeled internal standards would not be adequate for the analysis of an amino acid and acylcarnitine profile, together comprising a range of 500 separate mass units and more than 30 important metabolites, most of which require accurate quantification. When screening began to expand beyond research, it was clear that weighing out small quantities of individual standards would reduce accuracy and introduce unnecessary error. Therefore, together, we set out to develop sets of standards for amino acids and acylcarnitine analysis that would enable quantification. We started this development more than 20 years ago adding, changing and improving these standards. CIL, together with the early developers of tandem mass spectrometrybased newborn screening, set the standard by which all other laboratories follow. CIL's commitment to supporting the metabolic and newborn screening community is exceptional. It is our good fortune in the clinical chemistry and mass spectrometry community to have CIL as part of our laboratory solutions.

> - Donald H. Chace, PhD MSFS FACB Medolac Laboratories (USA)

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Compositions

Reconstituting a given NSK-B or NSK-B-G1 vial's contents in 1 mL of highly pure methanol will produce the tabulated concentrations below. To facilitate complete dissolution, it is recommended to vortex manually for 1 minute then auto-vortex for a minimum of 30 seconds. **Note:** A combined set of NSK-B and NSK-A – the amino acid reference standard mix – is also available (NSK-AB).

NSK-B			
Compound	Abbrev.	Label and Enrichment	Conc. (µM)
L-Carnitine	C0	trimethyl-D ₉ , 98%	152
O-Acetyl-L-carnitine·HCl	C2	N-methyl-D ₃ , 98%	38
O-Propionyl-L-carnitine·HCl	C3	N-methyl-D ₃ , 98%	7.6
O-Butyryl-L-carnitine·HCl	C4	N-methyl-D ₃ , 98%	7.6
O-Isovaleryl-L-carnitine·HCl	C5	N,N,N-trimethyl-D ₉ , 98%	7.6
O-Octanoyl-L-carnitine·HCl	C8	N-methyl-D ₃ , 98%	7.6
O-Myristoyl-L-carnitine·HCl	C14	N,N,N-trimethyl-D ₉ , 98%	7.6
O-Palmitoyl-L-carnitine·HCl	C16	N-methyl-D ₃ , 98%	15.2

NSK-B-G1			
Compound	Abbrev.	Label and Enrichment	Conc. (µM)
O-Glutaryl-L-carnitine⋅ClO ₄	C5-DC	<i>N</i> -methyl-D ₃ , 98% (CP 97%)	15.2
3-Hydroxyisovaleryl-L-carnitine·ClO ₄	C5-OH	N-methyl-D ₃ , 98%	7.6
O-Dodecanoyl-L-carnitine·HCl	C12	N,N,N-trimethyl-D ₉ , 98%	7.6
O-3-DL-Hydroxypalmitoyl-L-carnitine·ClO ₄	C16-OH	N-methyl-D ₃ , 98%	15.2
O-Octadecanoyl-L-carnitine·HCl	C18	N-methyl-D₃, 98%	15.2

Usage Specifications

Mix Type	NSK-B	NSK-B-G1	
No. of uses	960 samples/vial		
Before reconstitution:			
Storage	≤8°C; protec	ct from light	
Recommended retest	1 year from date of manufacture 2 years from date of manufacture		
After reconstitution:			
Storage	5±3°C in a tightly sealed vial	5±3°C in a tightly sealed vial	
	Note: Storing the sealed vial in a second sealed container helps maintain the integrity of the solution		
Recommended retest	4 weeks		

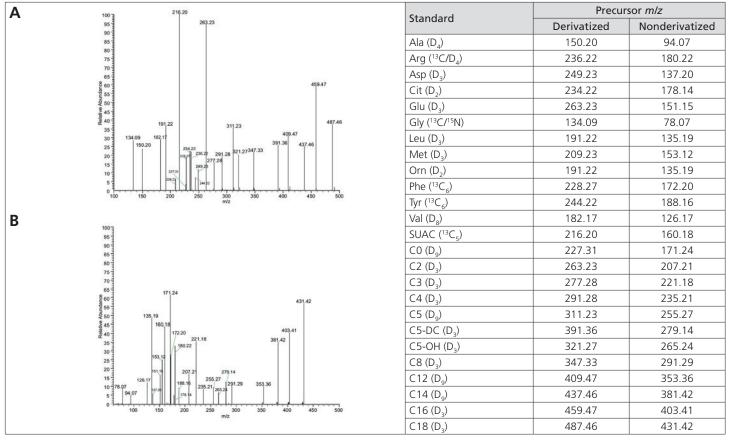


Figure. Full scan MS1 spectra of the DBS internal standards, with the derivatized standards shown in **A** and the nonderivatized in **B**. The standard mixture consists of stable isotope-labeled amino acids (NSK-A and -T) and carnitine/acylcarnitines (NSK-B and NSK-B-G). Please refer to Thermo Scientific technical note #73398 for method and application details.

Example References

Habib, A.; Azize, N.A.A.; Rahman, S.A.; et al. **2021**. Novel mutations associated with carnitine-acylcarnitine translocase and carnitine palmitoyl transferase 2 deficiencies in Malaysia. *Clin Biochem, 98, 48-53*.

Brailova, M.; Clerfond, G.; Trésorier, R.; et al. **2020**. Inherited metabolic diseases and cardiac pathology in adults: diagnosis and prevalence in a cardiometabo study. *J Clin Med*, *9*(3), 694-707.

Varkey, A.; Devi, S.; Mukhopadhyay, A.; et al. **2020**. Metabolome and microbiome alterations related to short-term feeding of a micronutrient-fortified, high-quality legume protein-based food product to stunted school age children: a randomized controlled pilot trial. *Clin Nutr, 39(11), 3251-3261*.

Brennenstuhl, H.; Kohlmüller, D.; Gramer, G.; et al. 2020. High throughput newborn screening for aromatic ι-amino-acid decarboxylase deficiency by analysis of concentrations of 3-O-methyldopa from dried blood spots. *J Inherit Metab Dis*, 43(3), 602-610.

Cao, B.; Wang, D.; Pan, Z.; et al. **2019**. Characterizing acylcarnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. *Transl Psychiatry*, *9*(1), 19. Puskarich, M.A.; Evans, C.R.; Karnovsky, A.; et al. **2018**. Septic shock nonsurvivors have persistently elevated acylcarnitines following carnitine supplementation. *Shock*, *49*(*4*), 412-419.

Technical Note

Xie, X.; Kozak, M. **2020**. Simultaneous analysis of amino acids, acylcarnitines, and succinylacetone in dried blood spots for research using nonderivatized and derivatized methods. (Thermo Scientific technical note #73398).

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Fatty Acid/Lipid Mixes

Fatty acids and lipids are important biological compounds that are essential to the regulation and control of cellular functions and metabolic pathways. These biomolecules are also tied to the energetic balance of an organism. Their qualitative/quantitative analysis has emerged to better understand the underlying pathophysiology, as well as to identify new biomarkers or diagnose existing ones. To aid such initiatives, CIL offers an array of mixed fatty acids and triglycerides. These dried-down mixes are uniformly labeled and available in different forms (i.e., free acid, methyl ester) as research-grade material.

Click on the thumbnail or visit isotope.com/applications/ for

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
CLM-8455	Fatty Acid Mix (U-13C, 98%)	5-10	0.25 g, 1 g
DLM-8572	Fatty Acid Mix (U-D, 96-98%)	5-10	Please inquire
CDLM-8376	Fatty Acid Mix (U-13C, 98%; U-D, 97%)	5-10	0.25 g, 1 g
CLM-8381	Fatty Acid, Methyl Ester Mix (U-13C, 98%) (unlabeled terminal ester) CP 95%	5-10	0.25 g, 1 g
DLM-2497	Fatty Acid, Methyl Ester Mix (U-D, 96-98%)	5-10	Please inquire
DLM-8375	Triglyceride Mix (U-D, 97%)	5-10	0.25 g, 1 g

Compositions

The mixed fatty acid and triglyceride products are derived from the Agmenelum quadriplicatum algal source. Please inquire for details as the mix compositions can vary by lot.

Usage Specifications

Mix Time		Before Reconstitution		
Mix Type	Catalog No.	Storage	Recommended Retest	
Fatty acids	CLM-8455 DLM-8572 CDLM-8376	-5 to 5°C; protect from light	2 years	
Fatty acid, methyl esters	CLM-8381 DLM-2497	-5 to 5°C; protect from light	5 years	
Triglycerides	DLM-8375	-5 to 5°C; protect from light	5 years	

Example References

Chen, J.; Zou, L.; Lu, G.; et al. 2022. PFKP alleviates glucose starvation-induced metabolic stress in lung cancer cells via AMPK-ACC2 dependent fatty acid oxidation. Cell Discov, 8(1), 52-67.

Hernandez-Saavedra, D.; Sanders, L.; Freeman, S.; et al. 2020. Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment. Sci Rep, 10(1), 413-426.

He, C.; Weston, T.A.; Junq, R.S.; et al. 2018. NanoSIMS analysis of intravascular lipolysis and lipid movement across capillaries and into cardiomyocytes. Cell Metab, 27(5), 1055-1066.

Nucleic Acid Sets

Nucleic acids are necessary biomolecules of living systems, being fundamentally important to a multitude of cellular processes. Its basic building blocks are nucleobases (e.g., adenine, cytosine), nucleosides (e.g., adenosine, guanosine), and nucleotides (e.g., ATP, CDP). The qualification/quantification of these compounds is conducted for a number of purposes. This includes the screening of metabolic errors and evaluating the efficacy of drug treatments (be it anticancer, antiviral, or immunosuppressive), among other target areas. CIL offers a variety of stable isotope-labeled nucleic acid sets to help advance MS- and/or NMR-based research. The sets consist of deoxyribonucleoside monophosphates (dNMPs), deoxyribonucleoside triphosphates (dNTPs), and ribonucleoside triphosphate (rNTPs) in different unit configurations.

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
CNLM-7871-SL	Set of 4 2'-deoxyribonucleoside 5'-monophosphates, lithium salt (13C, 98%; 15N, 98%) (in solution) CP 95%	4	10 mg
NLM-7512-SL	Set of 4 2'-deoxyribonucleoside 5'-triphosphates, lithium salt (15N, 98%) (in solution) CP 95%	4	10 mg, 50 mg
DLM-7511-SL	Set of 4 2'-deoxyribonucleoside 5'-triphosphates, lithium salt (D, 98%) (in solution) CP 95%	4	10 mg, 50 mg
CNLM-7513-SL	Set of 4 2'-deoxyribonucleoside 5'-triphosphates, lithium salt (13C, 98%; 15N, 98%) (in solution) CP 95%	4	10 mg, 50 mg
NLM-7519-SL	Set of 4 ribonucleoside 5'-triphosphates, lithium salt (15N, 98%) (in solution) CP 95%	4	10 mg, 50 mg
DLM-7518-SL	Set of 4 ribonucleoside 5'-triphosphates, lithium salt (D, 98%) (in solution) CP 95%	4	10 mg, 50 mg
CNLM-7503-SL	Set of 4 ribonucleoside 5'-triphosphates, lithium salt (13C, 98%; 15N, 98%) (in solution) CP 95%	4	10 mg, 50 mg
NLM-7519-CA	Set of 4 ribonucleoside 5'-triphosphates, ammonium salt (15N; 98%) (in solution) CP 90%	4	4 × 20 μmol 4 × 100 μmol
DLM-7518-CA	Set of 4 ribonucleoside 5'-triphosphates, ammonium salt (D, 98%) (in solution) CP 95%	4	4 × 20 μmol 4 × 50 μmol 4 × 100 μmol
CNLM-7503-CA	Set of 4 ribonucleoside 5'-triphosphates, ammonium salt (13C, 98%; 15N, 98%) (in solution) CP 95%	4	4 × 20 μmol 4 × 50 μmol 4 × 100 μmol

dNMP

Composition and Specification

Catalog No.	dNMP	Conc. (mM)
CNLM-7871-SL	AMP, CMP, GMP, TMP	80

- Supplied on dry ice as a solution of 5 mM Tris-HCl (pH 7.5) in water.
- Store below -20°C; protect from light.

dNTPs

Compositions and Specifications

Catalog No.	dNTP	Conc. (mM)
NLM-7512-SL		
DLM-7511-SL	datp, dctp, dgtp, dttp	50-100
CNLM-7513-SL		

- Supplied on dry ice as a solution of 5 mM Tris-HCl (pH 7.5) in water (for NLM-7512-SL and CNLM-7513-SL) or D₂O (for DLM-7511-SL)
- Store below -20°C; protect from light.

Example References

Liu, B.; Winkler, F.; Herde, M.; et al. 2019. A link between deoxyribonucleotide metabolites and embryonic cell-cycle control. Curr Biol, 29(7), 1187-1192. Song, Y.; Marmion, R.A.; Park, J.O.; et al. 2017. Dynamic control of dNTP synthesis in early embryos. Dev Cell, 42(3), 301-308.

rNTPs

Compositions and Specifications

Catalog No.	rNTP	Conc. (mM)
NLM-7519-SL		
DLM-7518-SL	ratp, rctp, rgtp, rttp	50-100
CNLM-7503-SL		

- Supplied on dry ice as a solution of 5 mM Tris-HCl (pH 7.5) in water (for NLM-7519-SL and CNLM-7503-SL) or D₂O (for DLM-7518-SL)
- Store below -20°C; protect from light.

Catalog No.	rNTP	Conc. (mM)	
NLM-7519-CA			
DLM-7518-CA	ratp, rctp, rgtp, rutp	20, 50, and/or 100	
CNLM-7503-CA			

- Supplied on dry ice as a solution (e.g., 100 mM contains 100 µmol of each rNTP in 1 mL water, pH ~7.5).
- Store at -20°C; protect from light. Recommended retest is 5 years from date of manufacture.

Organic Acid Mixes

Organic acids are byproducts of amino acids and are intermediates in various biochemical pathways. To aid MS-based metabolomic research endeavors, CIL has formulated an isotope-enriched organic acid mix. This single-vial mixture comprises 33 organic acids (MSK-OA-1) and is also available as an unlabeled mix (MSK-OA-US-1).

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
MSK-OA	Organic Acid Mix	33	1 vial

isotope.com/applications/ for

Compositions

Composition of the stable isotope-labeled organic acid mixture. Reconstituting this dried-down mix in 1 mL of solvent (e.g., water, 1:1 v/v methanol:water) yields an equimolar concentration of 250 μM. Note: Mixes of these organic acid subclasses may be available; please inquire.

Keto Acids	Hydroxy Acids
α -Ketobutyric acid, sodium salt ($^{13}C_4$, 98%)	Glycolic acid, sodium salt (1,2-13C ₂ , 99%)
α -Ketoglutaric acid, disodium salt (1,2,3,4- 13 C ₄ , 99%) CP 97%	Malic acid, disodium salt·H ₂ O (¹³ C ₄ , 99%)
α -Ketoisocaproic acid, sodium salt ($^{13}C_6$, 99%)	Sodium D-3-hydroxybutyrate (13C ₄ , 99%) CP 97%
α -Ketoisovaleric acid, sodium salt ($^{13}C_5$, 98%)	Sodium L-lactate (13C ₃ , 98%)
Sodium pyruvate (13C ₃ , 99%)	DL 2-Hydroxyglutarate, disodium salt (13C ₅ , 99%)
Diacids	Aromatic Acids
Adipic acid, disodium salt (13C ₆ , 99%)	Hippuric acid (ring- ¹³ C ₆ , 99%)
Fumaric acid, disodium salt (13C ₄ , 99%)	Homovanillic acid, sodium salt (1,2-13C ₂ , 98-99%)
Maleic acid, disodium salt·H ₂ O (¹³C ₄ , 99%)	Phthalic acid, disodium salt (13C ₄ , 99%)
Malonic acid, disodium salt (13C ₃ , 99%)	Sodium benzoate (ring- ¹³ C ₆ , 99%)
Methylmalonic acid, disodium salt (13C ₄ , 99%)	DL-Vanilmandelic acid (ring- ¹³ C ₆ , 99%)
Oxalic acid, disodium salt (1,2-13C ₂ , 99%)	Other Acids
Sodium isobutyrate (13C ₄ , 99%)	trans-Aconitic acid (2,4,4'- ¹³ C ₃ , 99%) CP 95%
Succinic acid, disodium salt (13C ₄ , 99%)	L-Ascorbic acid (13C ₆ , 99%)
Monoacids	Creatine (15N ₃ , 98%)
Sodium acetate (1,2-13C ₂ , 99%)	Orotic acid, sodium salt (15N ₂ , 98%)
Sodium butyrate (13C ₄ , 99%)	Sodium D-gluconate (13C ₆ , 99%)
Sodium propionate (13C ₃ , 99%)	Trisodium citrate (1,5,6-carboxy- ¹³ C ₃ , 99%)
	Uric acid, sodium salt (15N ₂ , 98%) CP 95%

Usage Specifications

Criteria	Recommendation		
Before reconstitution:			
Storage	Storage -5 to 5°C; protect from light		
Recommended retest	2 years from date of manufacture		
After reconstitution:			
Storage	4°C		
Recommended retest	4 weeks		

Note: Extended mix stabilities have been demonstrated when solubilized in 50% methanol and stored as specified above.

Companion unlabeled standard mixes and kits may be available; please inquire.

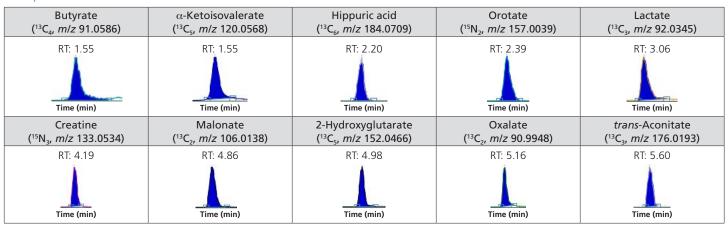


Figure. XICs of example metabolites measured in the labeled OA master mix by HILIC-MS (Orbitrap ID-X, negative ESI). Shown are a collection of OAs from a variety of subset classes. The m/z displayed are the [M-H] ions. Procedurally, the dried-down master mix was reconstituted in 1 mL of 50% methanol then an aliquot 10-fold diluted before MS1 analysis.

Example Reference

DeArmond, P.D.; Bunch, D.R. 2022. Quantitation of non-derivatized free amino acids for detecting inborn errors of metabolism by incorporating mixed-mode chromatography with tandem mass spectrometry. J Mass Spectrom Adv Clin Lab, 25, 1-11.

Application Note

Petucci, C.*; Percy, A.J.*; Zelenin, A.; Gardell, S.J.; Backiel, K. 2017. Organic acid quantitation in mouse muscle by ion chromatography-mass spectrometry with isotopically labeled standards. (Cambridge Isotope Laboratories, Inc. Application Note 47)

^{*}These authors contributed equally to this application note.

Other Mixes

A number of additional stable isotope-labeled mixes are also available at CIL (see overview). Included in this collection is a lysophosphatidylcholine (LPC or lysoPC) mix (NSK-LPC), a metabolomics standard mix (MSK-MET1), and MS/MS screening mixes for basic and translational MS research. The details of these mix offerings are outlined below.

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
NSK-LPC	Lysophosphatidylcholine Mix	4	1 vial
NSK-NI	Acid Sphingomyelinase Substrate and Internal Standard Mix	1 (S + IS)	1 vial
NSK-KR	Galactocerebrosidase Substrate and Internal Standard Mix	1 (S + IS)	1 vial
NSK-FA	lpha-Galactosidase Substrate and Internal Standard Mix	1 (S + IS)	1 vial
NSK-GA	Glucocerebrosidase Substrate and Internal Standard Mix	1 (S + IS)	1 vial
NSK-MP	lpha-L-Iduronidase Substrate and Internal Standard Mix	1 (S + IS)	1 vial
NSK-PO	Acid α -Glucosidase Substrate and Internal Standard Mix	1 (S + IS)	1 vial
MSK-MET1	Metabolomics Standard Mix 1	11	1 vial, 5 vials, 10 vials

Click on the thumbnails or visit isotope.com/applications/ for more information.

NSK-LPC Mix

Composition

Reconstituting a given LysoPC mix (labeled, NSK-LPC; unlabeled, NSK-LPC-US) in 1 mL of high-purity solvent (e.g., 95:5 v/v methanol:water) will produce the concentrations specified below. To facilitate complete dissolution, it is recommended to sonicate the vial for 3 minutes then auto-vortex for a minimum of 10 seconds.

Standard (Abbreviation)	Label and Enrichment	Conc. (µM)	Structure
Lysophosphatidylcholine 20:0 (LysoPC 20:0)	eicosanoyl-12,12,13,13-D ₄ , 98%	5.5	$CH_{3}(CH_{2})_{6}(CD_{2})_{2}(CH_{2})_{10} \\ O \\ $
Lysophosphatidylcholine 22:0 (LysoPC 22:0)	docosanoyl-1,2,3,4,5,6- ¹³ C ₆ , 99%	5.5	CH ₃ (CH ₂) ₁₅ (ČH ₂) ₅ O CH ₃ CH ₃ CH ₃ CH ₃
Lysophosphatidylcholine 24:0 (LysoPC 24:0)	tetracosanoyl-1,2,3,4,5,6- ¹³ C ₆ , 99%	5.5	CH ₃ (CH ₂) ₁₇ (ČH ₂) ₅ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
Lysophosphatidylcholine 26:0 (LysoPC 26:0)	hexacosanoyl-1,2,3,4,5,6- ¹³ C ₆ , 99%	5.5	$CH_3(CH_2)_{13}(CH_2)_5 \overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}}{\overset{O}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}}}}}}}$

Usage Specifications

Criteria	Recommendation		
No. of uses	~765 samples/vial		
Before reconstitution:		After reconstitution:	
Storage	≤20°C; protect from light	Storage	5±3°C or -20±5°C
Recommended retest	1 year from date of manufacture	Recommended retest	6 weeks

Testing 1,200 to 2,000 newborn specimens every day is a challenging job. In order to ensure high data quality and proper efficacy of an MS-based screening assay (1st and 2nd tier), we utilize CIL's lyophilized LysoPC mix. This 4-plex cocktail helps reduce significantly our laboratory day-to-day variation and preparation time. We also use the LysoPC mixes (both unlabeled and isotope-labeled) in the tuning of our mass spectrometers and in determining response factors. This ensures that the concentrations rendered for each LysoPC is accurately obtained and can be cross-checked from platform-to-platform.

 Kuldeep Dhillon, Research Scientist Supervisor I California Department of Public Health (USA)

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated.

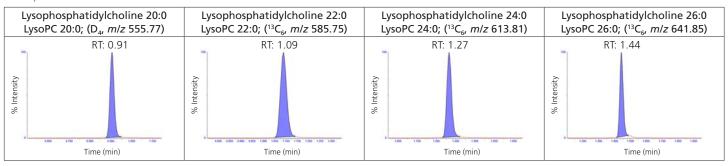


Figure. XICs of four labeled LysoPCs from the NSK-LPC mix measured by LC-MS/MS (positive ESI, Xevo-TQS). These serve as individual calibrators for their unlabeled counterparts in sample screening experiments. Data courtesy of CA Department of Public Health.

MS/MS Screening Mixes

α-Galactosidase Substrate and Internal Standard (NSK-FA-1)

Each vial contains the following compounds at a molar ratio of 500:1.

Substrate	Internal Standard	
(6-Benzoylamino-hexyl)-{2-[4-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-phenylcarbamoyl]-ethyl}-carbamic acid <i>t</i> -butyl ester	(6-D ₅ -Benzoylamino-hexyl)-[2-(4-hydroxy-phenyl-carbamoyl)-ethyl]-carbamic acid <i>t</i> -butyl ester	
C ₃₃ H ₄₇ N ₃ O ₁₀ MW: 645.7 Da	C ₂₇ H ₃₂ N ₃ O ₅ D ₅ MW: 488.5 Da	
HO OH HO CH3 CH3 CH3	HO————————————————————————————————————	

Glucocerebrosidase Substrate and Internal Standard (NSK-GA-1)

Each vial contains the following compounds at a molar ratio of 50:1.

Substrate		Internal Standard	Internal Standard	
D-Glucosyl-β1-1'- <i>N</i> -dodecanoyl-D- <i>erythro</i> -sphingosine [C12-glucocerebroside]		N-Myristoyl-D- <i>erythro</i> -	N-Myristoyl-D- <i>erythro</i> -sphingosine [C14-ceramide]	
C ₃₆ H ₆₉ NO ₈	MW: 643.9 Da	C ₃₂ H ₆₃ NO ₃	MW: 509.8 Da	
HO OH OH OH OCH5			$\begin{array}{c} \text{OH} \\ \text{HO} \\ \\ \text{HN} \\ \\ \text{O} \end{array} $	

Galactocerebrosidase Substrate and Internal Standard (NSK-KR-1)

Each vial contains the following compounds at a molar ratio of 150:1.

Substrate		Internal Standard	
D-Galactosyl-β1-1'-octanoyl-D- <i>erythro</i> -sphingosine [C8-galactosylceramide]		N-Decanoyl-D- <i>erythro</i> -sphingosine [C10-ceramide]	
C ₃₂ H ₆₁ NO ₈	MW: 587.8 Da	C ₂₈ H ₅₅ NO ₃	MW: 453.7 Da
но О	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$HO \longrightarrow CH_3$

α-L-Iduronidase Substrate and Internal Standard (NSK-MP-1)

Each vial contains the following compounds at a molar ratio of 150:1.

Substrate		Internal Standard	
(7-(1-Iduronic acid)-oxycoumarin-4-methylamine-(5'-N-boc-aminopentanoyl)-amide)		(7-Hydroxycoumarin-4-methylamine-(4'-N-boc-aminobutanoyl)-amide)	
C ₂₆ H ₃₄ N ₂ O ₁₂	MW: 566.6 Da	C ₁₉ H ₂₄ N ₂ O ₆	MW: 376.4 Da
	HO ₂ C 7 OH OH OH		HN CH ₃ CH ₃ CH ₃ CH ₃

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Acid Sphingomyelinase Substrate and Internal Standard (NSK-NI-1)

Each vial contains the following compounds at a molar ratio of 50:1.

Substrate		Internal Standard	
N-Hexanoyl-D-erythro-sphingosylphosphorylcholine [C6-sphingomyelin]		N-Butyroyl-D- <i>erythro</i> -sphingosine [C4-ceramide]	
C ₂₉ H ₅₉ N ₂ O ₆ P MW: 562.8 Da		C ₂₂ H ₄₃ NO ₃	MW: 369.6 Da
H ₅ C-N ¹ ····································			OH HN CH ₃

Acid α-Glucosidase Substrate and Internal Standard (NSK-PO-1)

Each vial contains the following compounds at a molar ratio of 100:1.

Substrate	Internal Standard	
	$(7-D_s$ -Benzoylamino-heptyl)-[2-(4-hydroxy-phenyl-carbamoyl)-ethyl]-carbamid acid t -butyl ester	
C ₃₄ H ₄₉ N ₃ O ₁₀ MW: 659.8 Da	C ₂₈ H ₃₄ N ₃ O ₅ D ₅ MW: 502.7 Da	
OH HOOOHO OH OH OH OH OH OH OH OH OH OH OH OH OH O	HO-CD-N-CH3 CH3 DD D	

Usage Specifications

Criteria	Recommendation	
Use	~600 samples/vial	
Before reconstitution:		
Storage	-20°; protect from light	
Recommended retest	2 years from date of manufacture	
After reconstitution:		
Storage	5±3°C or -20±5°C	
Recommended retest	4 weeks	

Example References

Ribas, G.; De Mari, J.F.; Civallero, G.; et al. 2017. Validation of a multiplex tandem mass spectrometry method for the detection of selected lysosomal storage diseases in dried blood spots. JIMES, 5, 1-7.

Tortorelli, S.; Turgeon, C.T.; Gavrilov, D.K.; et al. 2016. Simultaneous testing for 6 lysosomal storage disorders and x-adrenoleukodystrophy in dried blood spots by tandem mass spectrometry. Clin Chem, 62(9), 1248-1254.

Cho, S.E.; Kwak, J.R.; Lee, H.; et al. 2016. Triplex tandem mass spectrometry assays for the screening of 3 lysosomal storage disorders in a Korean population. Clin Chim Acta, 454, 20-27.

MSK-MET1 Mix

Composition

Reconstituting a given vial in 1 mL of solvent (e.g., water) will produce the tabulated concentrations below. Note: The unlabeled 2DG was included to examine its metabolic uptake in tracer studies.

Compound	Abbrev.	Label and Enrichment	Conc. (mM)
L-Alanine	Ala	2,3,3,3-D ₄ , 98%	20
L-Carnitine	C0	trimethyl-D ₉ , 98%	0.4
Creatinine	Crn	N-methyl-D ₃ , 98%	0.7
2-Deoxy-D-glucose	2DG	unlabeled	50
D-Glucose	Glc	U- ¹³ C ₆ , 99%	400
L-Glutamine	Gln	2,3,3,4,4-D ₅ , 97%	8
L-Leucine	Leu	5,5,5-D ₃ , 99%	5
L-Phenylalanine	Phe	ring-D ₅ , 98%	0.5
Sodium butyrate	BTA	D ₇ , 98%	2
Sodium propionate	PA	D ₅ , 98%	2
Urea	UR	¹⁵ N ₂ , 98%	20

Usage Specifications

Criteria	Recommendation		
Before reconstitution:			
Storage	4°C; protect from light		
Recommended retest	2 years from date of manufacture		

Example Results

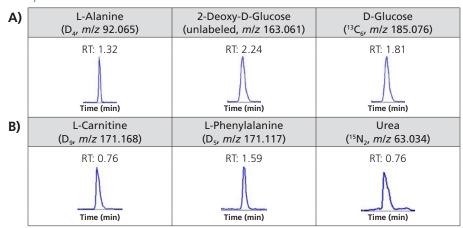


Figure. Representative XICs of example metabolites in the MET1 mix measured in mouse plasma by LC-MS analysis. A TripleTOF 6600 was fronted by a Hypercarb™ Porous Graphitic Carbon HPLC column (100 × 4.6 mm, 3 µm) in A) and a Kinetex F5 HPLC column (100 × 2.1 mm, 2.6 µm) in B) operated under negative and positive ESI, respectively. Data was courtesy of the Kibbey lab at Yale School of Medicine.

Steroid Mixes and Sets

Steroids play vital roles in the regulation of a diverse array of cellular functions and physiological processes. These pertain to development, reproduction, homeostasis, and metabolism, among others. Accurate quantification of this compound class is essential for basic and translation research. To aid MS-based research endeavors in this space, CIL is pleased to offer a few different types of stable isotope-labeled steroid mixes.

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
NSK-S	Steroid Mix Set S	5	1 vial, 10 vials
NSK-S-40X	Steroid Mix Set S (40X)	5	1 vial, 10 vials
NSK-S-EXP	Expanded Steroid Mix Set S	9	1 vial, 10 vials

Click on the thumbnail or visit isotope.com/applications/ for

NSK-S Mix

Composition

Reconstituting a given vial's contents in 1 mL of highly pure methanol will produce the concentrations listed in the table below. To facilitate complete dissolution, it is recommended to vortex manually for 1 minute then auto-vortex for a minimum of 30 minutes. Note: NSK-S-40X has 40x the specified concentrations.

Compound	Abbrev.	Label and Enrichment	Conc. (nM)
4-Androstene-3,17-dione	A4	2,2,4,6,6,16,16-D ₇ , 97%	20
Cortisol	F	9,11,12,12-D ₄ , 98%	100
11-Deoxycortisol	11-S	2,2,4,6,6-D ₅ , 98%	20
21-Deoxycortisol	21-S	2,2,4,6,6,21,21,21-D ₈ , 97%	20
17α-Hydroxyprogesterone	17-OHP	2,2,4,6,6,21,21,21-D ₈ , 98%	20

Usage Specifications

Criteria	Recommendation
No. of uses	48 samples/vial
Before reconstitution:	
Storage	-5 to 5°C; protect from light
Recommended retest	5 years from date of manufacture
Upon reconstitution:	
Storage	Store in a tightly sealed vial at 5±3°C. Note: Storing the sealed vial in a second sealed container helps maintain the integrity of the solution.
Recommended retest	4 weeks

Example References

Gervasoni, J.; Schiattarella, A.; Primiano, A.; et al. 2016. Simultaneous quantification of 17-hydroxyprogesterone, androstenedione, testosterone and cortisol in human serum by LC-MS/MS using TurboFlow online sample extraction. Clin Biochem, 49(13-14), 998-1003.

Hicks, R.A.; Yee, J.K.; Mao, C.S.; et al. 2014. Precursor-to-product ratios reflect biochemical phenotype in congenital adrenal hyperplasia. Metabolomics, 10(1), 123-131.

NSK-S-EXP Mix

Composition

Reconstituting a given vial's contents in 1 mL of highly pure methanol will produce the concentrations listed in the table below. To facilitate complete dissolution, it is recommended to vortex manually for 1 minute then auto-vortex for a minimum of 30 minutes.

Compound	Abbrev.	Label and Enrichment	MW (Da)	Conc. (µM)
Aldosterone	А	D ₇ , 98%	367.49	0.52
4-Androstene-3,17-dione	A4	2,2,4,6,6-D ₅ , 98%	291.44	0.12
Corticosterone	В	2,2,4,6,6,17α,21,21-D ₈ , 97-98%	354.51	1.58
Cortisol	F	9,12,12-D ₃ , 98%	365.48	2.57
Dehydroepiandrosterone sulfate-sodium salt-2H ₂ O	DHEAS	2,2,3,4,4,6-D ₆ , 95%	432.54	21.69
11-Deoxycortisol	11-S	2,2,4,6,6-D ₅ , 98% (CP 97%)	351.49	0.54
17-α-Hydroxyprogesterone	17-OHP	2,2,4,6,6,21,21,21-D ₈ , 98%	338.51	0.27
Progesterone	Р	2,2,4,6,6,17α,21,21,21-D ₉ , 98%	323.52	0.14
Testosterone	Т	2,2,4,6,6-D ₅ , 98%	293.46	0.12

Usage Specifications

Criteria	Recommendation	
Before reconstitution:		
Storage	-5 to 5°C; protect from light	
Recommended retest	1 year from date of manufacture	

Pathway-Specific Mixes TCA Mixes and Sets

The tricarboxylic acid (TCA) cycle plays an essential role in central carbon and energy metabolism. The study of TCA cycle intermediates (e.g., citrate, α -ketoglutarate, succinate) and its offshoot metabolites (e.g., itaconate and 2-hydroxyglutarate), have proven pivotal in not only understanding their impact on metabolism, but also in profiling their cellular function/fate in oncogenesis, inflammation, and other pathologies (e.g., necrosis, cirrhosis). To aid the analysis of TCA cycle-associated compounds in metabolomic studies, we offer stable isotope-labeled and unlabeled TCA cycle mixes. These mixes are dried down and comprise a collection of TCA cycle and offshoot metabolites.

Click on the thumbnails or visit isotope.com/applications/ for more information

Overview

Catalog No.	Description	No. of Metabolites	Unit Size
MSK-TCA1	TCA Cycle Standard Mix 1	8	1 vial
MSK-TCA2	TCA Cycle Standard Mix 2	5	1 vial
MSK-TCA	TCA Cycle Standard Mix Sets 1 and 2	8 (in mix 1), 5 (in mix 2)	2 × 1 vials

Compositions

Composition of the stable isotope-labeled TCA mixtures. Reconstituting a given vial in 1 mL of solvent (e.g., water) will produce an equimolar concentration of 100 µM.

Compound	Abbrev.	Label and Enrichment	Mix No.
Fumaric acid, disodium salt	Fum	¹³ C ₄ , 99%	1
DL-2-Hydroxyglutaric acid, disodium salt	HG	¹³ C ₅ , 99%	1
lpha-Ketoglutaric acid, disodium salt	α-KG	1,2,3,4- ¹³ C ₄ , 99%	1
Malic acid, disodium salt	Mal	¹³ C ₄ , 99%	1
Sodium L-lactate	Lac	¹³ C ₃ , 98%	1
Sodium pyruvate	Pyr	¹³ C ₃ , 99%	1
Succinic acid, disodium salt	SA	¹³ C ₄ , 99%	1
Trisodium citrate	CA	1,5,6-carboxy- ¹³ C ₃ , 99%	1
L-Aspartic acid	Asp	¹³ C ₄ , 99%	2
L-Glutamic acid	Glu	¹³ C ₅ , 99%	2
Isocitric acid, trisodium salt	Iso	3,4,5,6-13C ₄ , 98% (mixture of diastereomers)	2
Itaconic acid	IA	¹³ C ₅ , 99%	2
Potassium phosphoenol pyruvate	PEP	2,3- ¹³ C ₂ , 99%	2

Usage Specifications

Criteria	Recommendation	
Before reconstitution:		
Storage	ambient temperature; protect from light and moisture	
Recommended retest	2 years from date of manufacture	
After reconstitution:		
Storage	4°C	
Recommended retest	4 weeks	

Note: Extended mix stabilities have been demonstrated when solubilized in water and stored as specified above.

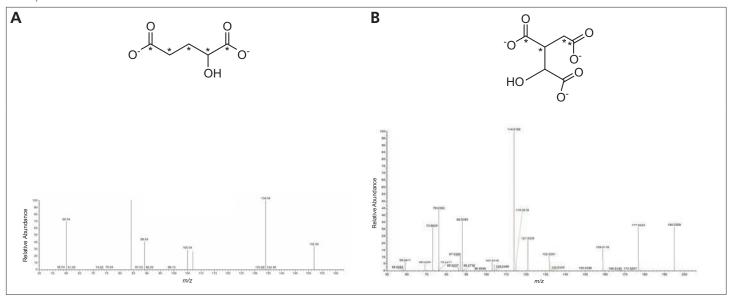


Figure. Example MS/MS spectra of the TCA mixes. These were obtained from the IC-MS analysis (negative ESI, Orbitrap Fusion Tribrid) of 10 µM working solutions. The compounds are ¹³C₅ 2-hydroxyglutarate (from mix 1) in **A)** and ¹³C₄ isocitrate (from mix 2) in **B)**. Their complete, unfragmented structures (¹³C₅ hydroxyglutarate, precursor m/z 152.05; ¹³C₄ isocitrate, precursor m/z 195.03) are illustrated for reference. Data was courtesy of the Metabolomics Facility at MD Anderson Cancer Center.

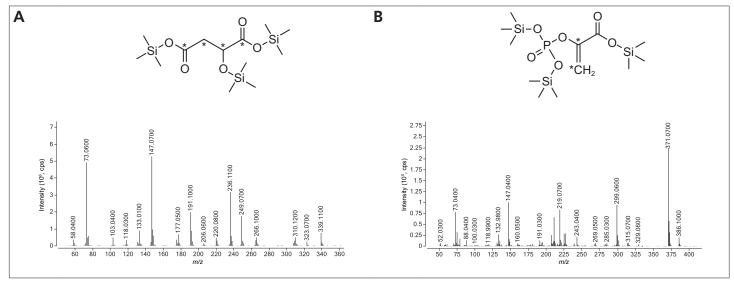


Figure. Example spectra of the labeled TCA mixes. These were obtained from the analysis of 50 µM working solutions by GC-MS (BSTFA with TMCS, EI ionization, scan mode on single quadrupole). The compounds are ¹³C₄ malate (from mix 1) in **A)** and ¹³C₂ phosphenol pyruvate (from mix 2) in **B)**. Their complete, unfragmented structures (¹³C₄ malate, exact mass 354.15; ¹³C₂ phosphenol pyruvate, exact mass 386.11) are illustrated for reference. Data was courtesy of the University of Chicago Metabolomics Facility.

The metabolomic compound mixes by Cambridge Isotope Laboratories have expedited several processes in our GC-MS analysis pipeline. We have used these products, including their novel TCA mixes, to verify metabolite retention times, test derivatization reaction conditions, and to confirm fragmentation patterns detected in biological samples. CIL's metabolite mixes are ready to go, easy to use, and consistently of high quality!

> - Ashley M. Sidebottom, PhD Metabolomics Platform Director, University of Chicago (USA) Host-Microbe Metabolomics Facility, Duchossois Family Institute

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Kits

To help facilitate product application, a number of the CIL mix offerings are accompanied with a user manual. The kit manual provides a guide to the preparation and processing possibilities for product implementation, as well as supplying further resources for additional user reference. The majority of the kits supply the supporting documents through a QR code (via product label on kit materials box); the exceptions are the PeptiQuant™ Plus kits (documents on USB) and the IROA kits (documents delivered in email). The accompanying documents minimally include a user manual, certificate of analysis (CoA), safety data sheet (SDS), and product flyer. Overall, the mixes are amenable for use in quality control and qualification/quantification exercises in the MS 'omics space using targeted, semitargeted, or untargeted LC-MS methodologies. Note that the individual mixes may be obtained separately without the manual. Please inquire.

Metabolomic QC Kits

To ensure high-quality metabolomics results, the method and instrument platform must be qualified as being fit-for-purpose. This involves testing for losses or errors in the analytical workflow. To aid such performance assessments in MS metabolomics and potentially other applications (e.g., qualification, quantification), CIL offers two types of QC kits: MSK-QC-KIT and MSK-QReSS-KIT (see details below). These kits comprise two vials of dried-down metabolite mixes (see composition tables below) and have been qualified on both low- and high-resolution mass spectrometers operated under an untargeted/targeted metabolomics regimen (see example results below).

Overview

Catalog No.	Description	No. of Metabolites	Kit Contents
MSK-QC-KIT	Metabolomics QC Kit	5 (in mix 1) 9 (in mix 2)	2 vials of ¹³ C-labeled metabolites document package (user manual, CoA, SDS, product flyer)
MSK-QReSS-KIT*	Metabolomics QReSS Kit	12 (in mix 1) 6 (in mix 2)	2 vials of isotope labeled metabolites document package (user manual, CoA, SDS, product flyer)

^{*}QReSS™ stands for Quantification, Retention, and System Suitability. This kit was developed and matrix tested in collaboration with SCIEX.

MSK-QC Kit

Mix Compositions

Reconstituting in 1 mL of solvent (e.g., 0.1% FA in 5% ACN) will yield the specified compound concentrations.

Compound	Abbrev.	Label and Enrichment	Conc. (µg/mL)	Mix No.
L-Alanine	Ala	¹³ C ₃ , 99%	4	1
L-Leucine	Leu	¹³ C ₆ , 99%	4	1
L-Phenylalanine	Phe	¹³ C ₆ , 99%	4	1
L-Tryptophan	Trp	¹³ C ₁₁ , 99%	40	1
L-Tyrosine	Tyr	¹³ C ₆ , 99%	4	1
D-Glucose	Glc	¹³ C ₆ , 99%	4	2
D-Sucrose	Suc	¹³ C ₆ , 98%	4	2
Caffeine	CAF	¹³ C ₃ , 99%	4	2
Stearic acid, sodium salt	18:0	¹³ C ₁₈ , 98%	0.4	2
Sodium octanoate	8:0	¹³ C ₈ , 99%	4	2
Sodium propionate	PA	¹³ C ₃ , 99%	4	2
Sodium benzoate	BZA	¹³ C ₆ , 99%	4	2
Sodium citrate	CA	¹³ C ₃ , 99%	4	2
Succinic acid, disodium salt	SA	¹³ C ₄ , 99%	4	2

Usage Specifications

Criteria	Recommendation	
Before reconstitution:		
Storage ambient temperature; protect from light and moisture		
Recommended retest 2 years from date of manufacture		

Example References

Barco, S.; Lavarello, C.; Cangelosi, D.; et al. 2022. Untargeted LC-HRMS based-plasma metabolomics reveals 3-O-methyldopa as a new biomarker of poor prognosis in high-risk neuroblastoma. Front Oncol, 12, 845936-845946.

Strelez, C.; Chilakala, S.; Ghaffarian, K.; et al. **2021**. Human colorectal cancer-on-chip model to study the microenvironmental influence on early metastatic spread. *iScience*, *24(5)*, 102509-102524.

Click on the thumbnails or visit isotope.com/applications/ for more information.

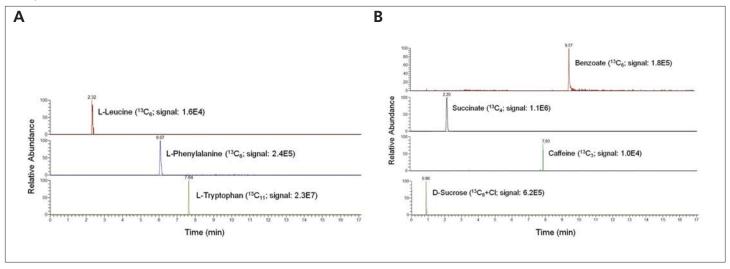


Figure. Representative XICs of a subset of kit metabolites – vial 1 in A and vial 2 in B – measured in human plasma by RPLC-MS (negative ESI, Q Exactive). Note that all isotopically labeled metabolites in the mixes co-eluted with their endogenous analytes in the plasma analyses and their m/z were predominantly [M-H]⁻.

for well over 15 years because of the high quality provided. I have collaborated with CIL to develop a new product that would enable improved quality control in MS metabolomics. This process was exciting and engaging. Through collaboration, I found CIL to be a cutting-edge vendor that seeks opportunities to enable scientific discovery and data quality. They seek advice from clients to learn how to better serve them. I always look forward to talking with CIL at conferences and often seek out their booth to visit, not just to talk science, but to also see how their team is doing .

> - Timothy J. Garrett, PhD Associate Professor in Department of Pathology, Immunology, and Laboratory Medicine, University of Florida (USA)

MSK-QReSS Kit

Mix Compositions

Reconstituting a given QReSS mix in 1 mL of solvent (e.g., 1:1 v/v methanol:water) will yield the specified compound concentrations.

Compound	Abbrev. or Alt. Name	Label and Enrichment	Conc. (µg/mL)	Mix No.
L-Alanine	Ala	¹³ C ₃ , 99%; ¹⁵ N, 99%	100	1
1,4-Butanediamine·2HCl	putrescine	¹³ C ₄ , 99%	10	1
Creatinine	Crn	N-methyl-D ₃ , 98%	100	1
Ethanolamine·HCl	ETA	1,1,2,2-D ₄ , 98%	10	1
Guanosine-2H ₂ O	Guo	¹⁵ N ₅ , 96-98%	2	1
Hypoxanthine	HPX	¹³ C ₅ , 99%	10	1
L-Leucine	Leu	¹³ C ₆ , 99%	5	1
L-Phenylalanine	Phe	ring- ¹³ C ₆ , 99%	100	1
Thymine	Т	1,3- ¹⁵ N ₂ , 98%	20	1
L-Tryptophan	Trp	¹³ C ₁₁ , 99%	100	1
L-Tyrosine	Tyr	ring- ¹³ C ₆ , 99%	100	1
Vitamin B ₃	nicotinamide	¹³ C ₆ , 99%	5	1
Citric acid	CA	1,5,6-carboxyl- ¹³ C ₃ , 99%	10	2
Fumaric acid	FA	¹³ C ₄ , 99%	100	2
Indole-3-acetic acid	IAA	phenyl-13C ₆ , 99%	5	2
α-Ketoglutaric acid, disodium salt	α-KG	1,2,3,4- ¹³ C ₄ , 99% (CP 97%)	100	2
Sodium palmitate	16:0	U- ¹³ C ₁₆ , 98%	10	2
Sodium pyruvate	Pyr	¹³ C ₃ , 99%	100	2

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Usage Specifications

Criteria	Recommendation		
Before reconstitution:	Before reconstitution:		
Storage	ambient temperature; protect from light and moisture		
Recommended retest	2 years from date of manufacture		
Upon reconstitution:			
Storage	4°C		
Recommended retest	4 weeks		

Example Results

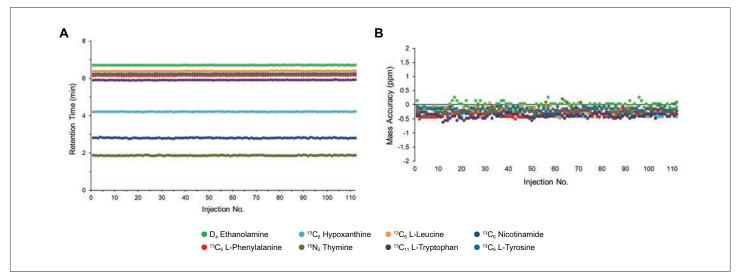
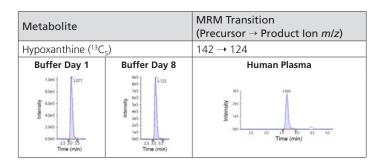



Figure.QC results for a subset of stable isotope-labeled QReSS metabolites measured across calibrants, QCs, and FBS samples. Acquisitions were by HILIC-MS (ESI+, Orbitrap Exploris™ 120). Variability of retention times are shown in **A** and mass accuracy in **B**. For additional information on the application, see **CIL application note #51**.

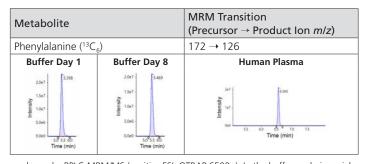
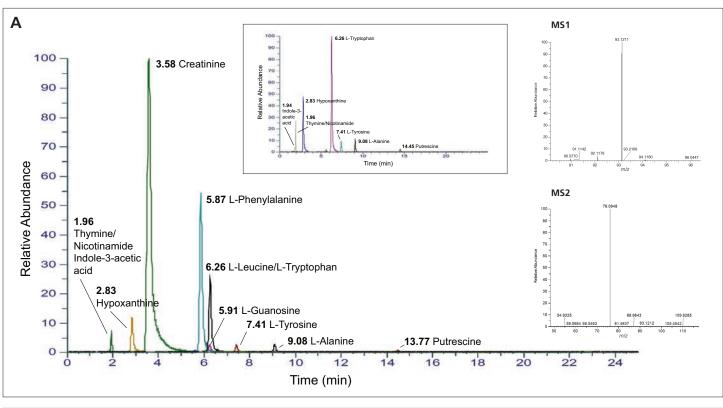



Figure. Example XICs for a subset of labeled QReSS metabolites measured in buffer and human plasma by RPLC-MRM/MS (positive ESI, QTRAP 6500+). In the buffer analysis, a vial of a working stock mix was stored in on autosampler rack (maintained at 4°C) and processed eight days apart. Such measurements, when performed and metric tracked routinely, would constitute a system suitability test. In the human plasma analysis, an aliquot of the working stock mix was matrix spiked and subjected to a metabolomics workflow. The relative signals to its corresponding endogenous analyte (not shown for simplicity) is within an order of magnitude and can be used for relative quantitative applications, with absolute quantitation likely involving calibration curves. For additional information and application demonstrations see CIL application note #49.

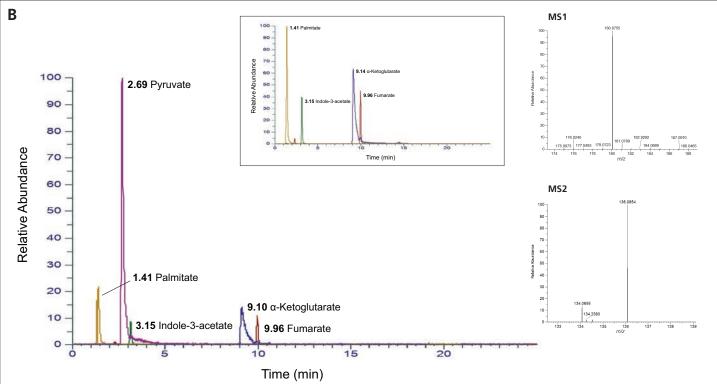


Figure. XIC overview of stable isotope-labeled QReSS metabolites measured neat by HILIC-MS (Q Exactive), with ESI+ in A and ESI- in B. Chromatographic insets reflect zoomed-in snapshots of lower-abundance metabolites, while the MS1/MS2 spectra reflect putrescine in A and indole-3-acetate in B along with their MS1 and MS2 spectra. For clarity, the following higher-abundance metabolites were removed in the insets – creatinine (RT 3.58 min), phenylalanine (RT 5.87 min), and leucine (RT 6.26 min) in A and pyruvate (RT 2.69 min) in B. Data is courtesy of the Jackson Laboratory.

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

Example Reference

Heppler, L.N.; Attarha, S.; Persaud, R.; et al. **2022**. The antimicrobial drug pyrimethamine inhibits STAT3 transcriptional activity by targeting the enzyme dihydrofolate reductase. *J Biol Chem, 298(2),* 101531-10548.

Application Notes

Percy, A.J.; Souza, A.; Ntai, I.; et al. **2022**. From QC to quantitation: Utility of QReSS[™] metabolites in FBS measurements (CIL application note #51). Percy, A.J.; Proos, R.; Demianova, Z.; et al. **2021**. Standardizing quantitative metabolomics analyses through the QReSS kit (CIL application note #49).

The unique feature of our media analysis workflow is the use of the QReSS standard mix. We spike this into media samples before extraction, which helps normalize variabilities in metabolite extraction efficiencies and combat matrix effects. The QReSS mix consists of 18 isotope-labeled metabolites, which spans a multitude of metabolic classes and mimics the largely diverse chemical composition of cell culture media. This serves as an excellent choice for an internal standard mix and helps to improve the accuracy, precision, and robustness of our cell culture method.

– Hari Kosanam, PhD

Associate Principal Scientist, Vaccine Process Development and Commercialization

Merck & Co. (USA)

Extract Kits

Expanded qualification remains a necessity in MS 'omics today. Validated identifications are desired that can be used to springboard in-depth profiling studies and selective quantifications in preclinical screening studies. To aid method benchmarking (e.g., through a credentialing approach) and improved qualification/quantification studies, CIL offers two types of cell extracts: yeast (Pichia pastoris, strain CBS 7435) and E. coli (K12 strain MG1655), as outlined in the overview table below. Upon careful and precise solubilization (see reconstitution guidelines below), 100s of metabolites are potentially observable in their U-13C and unlabeled form. The metabolites span a broad class range (see example identification tables), having linkage to various biochemical pathways (e.g., citrate and glyoxylate cycle, nucleotide and lipid metabolism) and cellular/molecular processes (e.g., intracellular signaling, immune system, blood coagulation, lipolysis). Please refer to the sample results and references below for examples of the productspecific applications.

Overview

Catalog No.	Description	No. of Analytes	Kit Contents
L-ISO1	Crude Lipid Yeast Extract (U- ¹³ C, 99%)	100s	1 vial of U- ¹³ C crude lipid yeast extract document package (user manual, CoA, SDS, product flyer)
L-ISO1-UNL	Crude Lipid Yeast Extract (unlabeled)	100s	 1 vial of unlabeled crude lipid yeast extract document package (user manual, CoA, SDS, product flyer)
ISO1	Metabolite Yeast Extract (U- ¹³ C, 98%)	100s	1 vial of U-13C metabolite yeast extract document package (user manual, CoA, SDS, product flyer)
ISO1-UNL	Metabolite Yeast Extract (unlabeled)	100s	 1 vial of unlabeled metabolite yeast extract document package (user manual, CoA, SDS, product flyer)
ISO1-KIT	Metabolite Yeast Extract Kit	100s	 1 vial of U-¹³C metabolite yeast extract 1 vial of unlabeled metabolite yeast extract document package (user manual, CoA, SDS, product flyer)
MSK-CRED-DD-KIT	Credentialed <i>E. coli</i> Cell Extract Kit (dried down)	100s	 1 vial (blue cap) of ¹³C-labeled <i>E. coli</i> cell extract (dried down) 1 vial (yellow cap) of unlabeled <i>E. coli</i> cell extract (dried down) document package (user manual, CoA, SDS, product flyer)
MSK-CRED-KIT	Credentialed <i>E. coli</i> Cell Extract Kit (solution)	100s	 1 vial (black) of ¹³C-labeled <i>E. coli</i> cell extract (solution) 1 vial (red) of unlabeled <i>E. coli</i> cell extract (solution) document package (user manual, CoA, SDS, product flyer)

Click on the thumbnails or visit isotope.com/applications/ for more information

Lipid Yeast Extracts

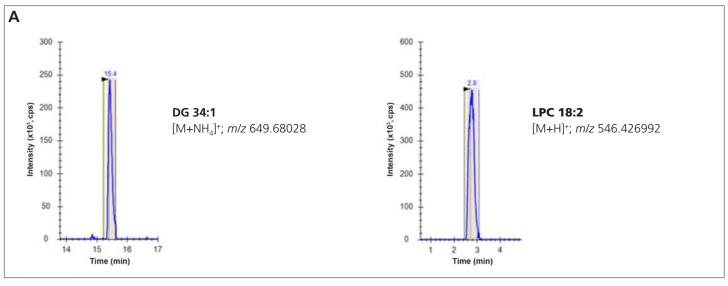
Compositions

Tabulated is a reproducibly identified panel of fatty acids and lipids measured in the lipid yeast extracts (U-13C, L-ISO1; unlabeled, L-ISO1-UNL) using one general RPLC-MS method. Note: Additional analytes have been measured with alternate methods and analysis techniques.

Category	Class	Examples (Fatty Acid L	Examples (Fatty Acid Level)		
Glycerolipids	Diglyceride (DG)	34:1 (16:0/18:1) 34:4 (16:2/18:2)		34:3 (16:1/18:2) 36:2 (18:0/18:2)	
		36:3 (18:1/18:2)	36:4 (18:1/18:3)	36:5 (18:2/18:3)	
	Triglyceride (TG)	50:1 (16:0/16:0/18:1) 50:4 (16:1/16:1/18:2) 52:2 (16:0/18:1/18:1) 52:5 (16:1/18:2/18:2) 54:1 (18:0/18:1/18:0)	50:2 (16:0/18:2/16:0) 50:5 (16:1/16:1/18:3) 52:3 (16:1/18:1/18:1) 52:6 (16:1/18:2/18:3) 54:2 (18:0/18:1/18:1)	50:3 (16:1/16:1/18:1) 52:1 (18:0/16:0/18:1) 52:4 (18:2/18:2/16:0) 52:7 (18:3/18:3/16:1) 54:3 (18:1/18:1/18:1)	
		54:4 (18:1/18:1/18:2) 54:7 (18:1/18:3/18:3)	54:5 (18:1/18:2/18:2) 54:8 (18:3/18:2/18:3)	54:6 (18:2/18:2/18:2) 54:9 (18:3/18:3/18:3)	

Category	Class	Examples (Fatty Acid Level)
Glycerophospholipids	Phosphatidic acid (PA)	34:1 (16:0/18:1) 34:2 (16:0/18:2) 34:3 (16:0/18:3)
		36:1 (18:0/18:1) 36:2 (18:0/18:2) 36:3 (18:1/18:2)
	Phosphatidylcholine (PC)	34:1 (16:0/18:1) 34:2 (16:0/18:2) 34:3 (16:0/18:3)
		34:4 (16:1/18:3) 36:2 (18:0/18:2) 36:3 (18:1/18:2)
		36:4 (18:1/18:3) 36:5 (18:2/18:3) 36:6 (18:3/18:3)
	Phosphatidylethanolamine (PE)	34:1 (16:0/18:1) 34:2 (16:0/18:2) 34:3 (16:0/18:3)
		36:1 (18:0/18:1) 36:2 (18:0/18:2) 36:3 (18:1/18:2)
		36:4 (18:1/18:3) 36:5 (18:2/18:3) 36:6 (18:3/18:3)
	Phosphatidylglycerol (PG)	34:1 (16:0/18:1) 34:2 (16:1/18:1)
	Phosphatidylinositol (PI)	34:1 (16:0/18:1) 34:2 (16:0/18:2) 36:1 (18:0/18:1)
		36:2 (18:1/18:1)
	Phosphatidylserine (PS)	34:1 (16:0/18:1) 34:2 (16:0/18:2) 34:3 (16:0/18:3)
		36:1 (18:0/18:1) 36:2 (18:0/18:2) 36:3 (18:0/18:3)
Lysophospholipids	Lysophosphatidylcholine (LPC)	16:1 18:1 18:2 18:3
	Lysophosphatidylethanolamine (LPE)	18:1 18:2 18:3
Sphingolipids	Ceramide (Cer)	d34:1 (d18:1/16:0)
		t36:0 (t18:0/18:0) t36:2 (t18:1/18:1)
	Hexosyl ceramide (HexCer)	t36:2 (t18:1/18:1)
Other	Acylcarnitines (AC)	16:1
	Cardiolipin (CL)	72:2 72:6 72:8 72:9
	Coenzyme (Co)	Q8
	Fatty acid (FA)	18:2 18:3

Usage Specifications


Extract Type	L-ISO1	L-ISO1-UNL	
No. of uses	~50*		
Before reconstitution:			
Storage	-80°C; protect from light		
Recommended retest	every 12 months		
Expiration	1 year from date of manufacture		

 $[*] Conservative \ estimate, \ with \ numbers \ varying \ depending \ on \ method \ and \ application.$

Solution Preparation Procedure

- 1. Reconstitute the lipid yeast extract (L-ISO1 or L-ISO1-UNL) in 1 mL solvent (e.g., isopropanol).
- 2. Following a high-speed vortex and brief centrifuge, the resulting clear solution can then be matrix-spiked, diluted (1/10 v/v), or prepared further for calibrant, QC, and/or sample addition.

Example Results

Chemical purity (CP) is 98% or greater, unless otherwise indicated.

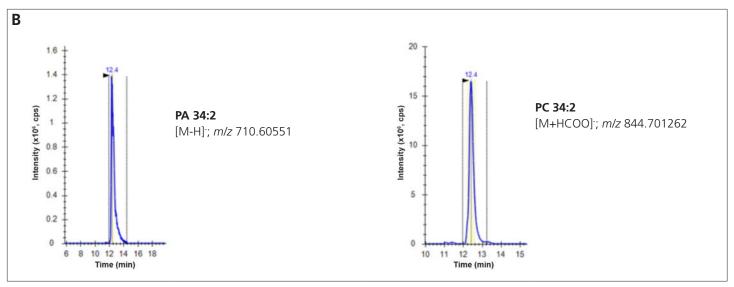


Figure. Representative XICs of example lipids measured in the U-13C lipid yeast extract by RPLC-MS (ACQUITY HSS T3, Orbitrap ID-X). The ionization mode was ESI+ in A and ESIin **B**. Data is courtesy of the Patti lab at Washington University.

Table. Example set of identified fatty acids and lipids measured by RPLC-IM-MS (ACQUITY™ Premier CSH™ C18 column, SYNAPT™ XS). Tabulated is analytical data for unlabeled and U-13C lipids acquired under ESI+ and ESI- (in blue) polarities. Error tolerances on the ion mobility-derived collision cross-sections (CCS) are ±3%. Data is courtesy of Waters (Manchester, UK).

		Precursor <i>m/z</i>			CCS	(Ų)
Lipid (Fatty Acid Level)	RT (min)	Unlabeled Lipids	U-13C Lipids	Adduct	Unlabeled Lipids	U-13C Lipids
Cer d34:1 (d18:1/16:0)	3.31	560.5023	594.6124	[M+Na]+	257.79	258.44
Cer d34:1 (d18:1/16:0)	3.31	536.5059	570.6159	[M-H]-	252.85	253.30
PC 34:2 (16:0/18:2)	2.85	758.5700	800.7074	[M+H]+	293.16	294.46
PC 36:4 (18:1/18:3)	2.53	782.5697	826.7160	[M+H]+	300.69	301.52
PE 34:2 (16:0/18:2)	2.96	716.5220	755.6510	[M+H]+	279.92	280.33
PE 34:2 (16:0/18:2)	2.96	738.5032	777.6310	[M+Na]+	286.03	286.47
LPC(16:1)	0.82	494.3223	518.4045	[M+H]+	229.29	229.61
LPC(16:1)	0.82	538.3145	562.3950	[M+HCOO] ⁻	238.29	239.23

Metabolite Yeast Extracts

Compositions

Tabulated are the routinely identified analytes in the metabolite yeast extracts (U-13C, ISO1; unlabeled, ISO1-UNL). Note: Additional metabolites have been measured with alternate methods and analysis techniques. This includes cofactors (e.g., NMN, ADPR, NADPH) and coenzymes (e.g., acetyl and malonyl coenzyme A).

Amino Acids and Derivatives (L enantiomer where applicable)				
S-Adenosyl-homocysteine (SAH)	Glutamate (Glu)	Methionine (Met)		
Alanine (Ala)	Glutamine (Gln)	(±)-3-Methyl-2-oxovalerate (K-IVal)		
α-Aminoadipate (AAD)	Glycine (Gly)	Ornithine (Orn)		
Arginine (Arg)	Guanidineacetate (GAA)	Phenylalanine (Phe)		
Argininosuccinate (ASA)	Histidine (His)	Proline (Pro)		
Asparagine (Asn)	Homoserine (Hse)	Sarcosine (Sar)		
Aspartate (Asp)	Isoleucine (Ile)	Serine (Ser)		
Betaine (BET)	α-Ketoisovalerate (KIV)	Threonine (Thr)		
Citrulline (Cit)	Kynurenine (KYN)	Tryptophan (Trp)		
Cystathionine (CYS)	Leucine (Leu)	Tyrosine (Tyr)		
Dihydroxyisovalerate (DIHV)	Lysine (Lys)	Valine (Val)		

Nucleobases, Nucleosides, and Nucleotides		
Adenine (Ade)	Cytidine triphosphate (CTP)	Inosine (Isin)
Adenosine (Asin)	Deoxyadenosine monophosphate (dAMP)	Inosine monophosphate (IMP)
Adenosine diphosphate (ADP)	5'-Deoxy-5'-methylthioadenosine (MTAP)	5-Methyluridine (m ⁵ U)
Adenosine monophosphate (AMP)	Guanine (Gnin)	Pseudouridine (PsU)
Adenosine triphosphate (ATP)	Guanosine (Gsin)	Uridine (Uri)
Cyclic adenosine monophosphate (cAMP)	Guanosine diphosphate (GDP)	Uridine diphosphate (UDP)
Cyclic guanosine monophosphate (cGMP)	Guanosine monophosphate (GMP)	Uridine monophosphate (UMP)
Cytidine monophosphate (CMP)	Guanosine triphosphate (GTP)	Uridine triphosphate (UTP)
Organic Acids		
cis-Aconitate (cis-Ac)	DL-2-Hydroxyglutarate (2-HG)	Malate (Mal)
Citrate (CA)	Isocitrate (Iso)	Pyruvate (Pyr)
Fumarate (Fum)	α -Ketoglutarate (α -KG)	Succinate (SA)
Gluconate (GA)	Lactate (Lac)	
Sugar and Sugar Phosphates (D enantiome	r where applicable)	
Dihydroxyacetone phosphate (DHAP)	Glucose (Glc)	6-Phosphogluconate (6PGA)
Erythritol (Erthrit)	Glucose-6-phosphate (G6P)	Ribose (RIB)
Fructose (Fuc)	Mannitol (Man-Ol)	Ribose-5-phosphate (R5P)
Fructose-1,6-bisphosphate (FBP)	Mannose (Man)	Sedoheptulose-7-phosphate (S7P)
Fructose-6-phosphate (F6P)	Mannose-6-phosphate (M6P)	Trehalose (TRE)
Galactose (Gal)	2-Phosphoglycerate (2PG)	
Vitamins and Coenzymes		
Biotin (B ₇)*	Nicotinamide (NAM)	Nicotinamide adenine dinucleotide, reduced (NADH)
Choline (CHOL)	Nicotinamide adenine dinucleotide, oxidized (NAD+)	Nicotinamide adenine dinucleotide phosphate, oxidized (NADP*)
Other Small Molecules		
Glutamylcysteine (Glu-Cys)	Glutathione, reduced (GSH)	
Glutathione, oxidized (GSSG)	Mevalonate (MVA)	

^{*}Identified in ISO1-UNL only.

Usage Specifications

ISO1	ISO1-UNL	
~50*		
-80°C; protect from light		
every 12 months		
4 years from date of manufacture		
Upon reconstitution:		
4°C		
4 weeks		
	-80°C; prote every 12 4 years from date	

^{*}Conservative estimate, with numbers varying depending on method and application.

Solution Preparation Procedure

- 1. Reconstitute the metabolite yeast extracts (ISO1 or ISO1-UNL) with 2 mL solvent (e.g., water, 50% methanol).
- 2. Vigorously shake by hand with intermittent high-speed vortexing (2 minute minimum).
- 3. Centrifuge at 20°C for 5 min at 4000 rcf.
- 4. The clear standard solution can then be diluted (1/10 v/v) for direct use or prepared further for calibration and matrix addition.

A video demonstration of this procedure can be obtained here, as well as in the resources section of the Metabolite Yeast Extracts application page (see isotope.com/applications/metabolic research/metabolomics mixtures and kits).

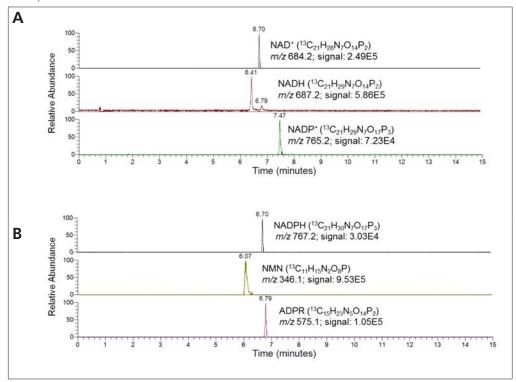


Figure. Representative XICs of 13C-labeled cofactors measured by HILIC-MS (positive ESI, Q Exactive HF). Shown in A are the routinely identified metabolites and B the additionally observed cofactors. Procedurally, the extract was reconstituted in 2 mL water then diluted 1:10 before analysis. The HILIC separation utilized an Acquity UPLC BEH Amide column $(100 \times 2.1 \text{ mm}, 1.7 \text{ µm particles})$

Example References

Reiter, A.; Asgari, J.; Wiechert, W.; et al. 2022. Metabolic footprinting of microbial systems based on comprehensive in silico predictions of MS/MS relevant data. Metabolites, 12(3), 257-280

Zhao, X.; Golic, F.T.; Harrison, B.R.; et al. 2022. The metabolome as a biomarker of aging in Drosophila melanogaster. Aging Cell, 21(2), e13548-13561.

Rampler, E.; Hermann, G.; Grabmann, G.; et al. 2021. Benchmarking non-targeted metabolomics using yeast-derived libraries. Metabolites, 11(3), 160-179.

Mairinger, T.; Weiner, T.; Hann, S.; et al. 2020. Selective and accurate quantification of N-acetylglucosamine in biotechnological cell samples via GC-MS/MS and GC-TOFMS. Anal Chem, 92(7), 4875-4883.

Rusz, M.; Rampler, E.; Keppler, B.K.; et al. 2019. Single spheroid metabolomics: optimizing sample preparation of three-dimensional multicellular tumor spheroids. Metabolites, 9(12), 304-325.

Galvez, L.; Rusz, M.; Schwaiger-Haber, M.; et al. 2019. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics, 11(10), 1716-1728.

Sullivan, M.R; Danai, L.V.; Lewis, C.A.; et al. 2019. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife, 8, e44235.

Demarest, T.G.; Truong, G.T.D.; Lovett, J.; et al. 2019. Assessment of NAD+ metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. Anal Biochem, 572, 1-8.

Hermann, G.; Schwaiger, M.; Volejnik, P.; et al. 2018. 13C-labelled yeast as internal standard for LC-MS/MS and LC high resolution MS-based amino acid quantification in human plasma. J Pharm Biomed Anal, 155, 329-334.

Guijas, C.; Montenegro-Burke, J.R.; Domingo-Almenara, X.; et al. 2018. METLIN: A technology platform for identifying knowns and unknowns. Anal Chem, 90(5), 3156-3164. Si-Hung, L.; Causon, T.J.; Hann, S. 2017. Comparison of fully wettable RPLC stationary phases for LC-MS-based cellular metabolomics. Electrophoresis, 38(18), 2287-2295.

Application Notes

Percy, A.J.; Munjoma, N.; Heywood, D.; et al. 2022. Targeted MRM screening of U-13C lipid yeast extracts for robust lipidomics applications (CIL application note #54). Mohsin, S.B.; Batoon, P. 2022. Absolute quantitation of fragile metabolites by isotope dilution mass spectrometry on the Agilent 6495 Triple Quadrupole LC/MS (Agilent application no. 5994-4439EN).

E. coli Cell Extracts

Compositions

Condensed table of example metabolites detected in the E. coli extract samples (see PMID: 29256075 for application details). The spread of logPs (source: ALOGPS) highlights the breadth of physicochemical diversity.

Compound (Abbrev. or Alt. Name)	LogP	Metabolite Class
Adenine (Ade)	-0.38	Nucleobase
Adenosine monophosphate (AMP)	-2.30	Nucleotide
Biotin (vitamin B ₇)	0.30	Vitamin
Coenzyme Q10 (CoQ10; ubiquinone)	9.94	Coenzyme
Diacylglycerol (DG) 17:0/17:0	10.16	Lipid
Diacylglycerol (DG) 18:0/18:2	10.28	Lipid
Diacylglyercol (DG) 18:1/18:1	10.26	Lipid
Elaidic acid (EA; trans 18:1)	7.68	Fatty acid
Glutathione (GSH)	-2.70	Peptide
Oleic acid (OA; 18:1)	7.68	Fatty acid
Palmitic acid (PAL; 16:0)	7.23	Fatty acid
Palmitoyl CoA (PAL-CoA)	2.35	Coenzyme
Phosphatidylcholine (PC) 18:2/18:2	5.68	Lipid
Phosphatidylethanolamine (PE) 16:1/16:1	7.89	Lipid
Phosphatidylethanolamine (PE) 18:1/18:1	8.81	Lipid
Phenethylamine (PEA)	1.41	Neurotransmitter
Proline (Pro)	-2.70	Amino acid
Phosphatidylserine (PS) 18:1/18:1	4.96	Lipid
Retinol (vitamin A)	6.38	Vitamin
Stearic acid (STE; 18:0)	8.02	Fatty acid
Thymidine (Thd)	-1.30	Nucleoside
Tryptophan (Trp)	1.04	Amino acid
Uracil (U)	-1.20	Nucleobase
Uridine (Uri)	-1.80	Nucleoside

Usage Specifications

Criteria	Recommendation
No of sample runs	≤20 (with 5 µL LC-MS injections)
Storage	-80°C; protect from light, air, and moisture
Recommended retest	2 years

Solution Preparation Procedure

- 1. Reconstitute the dried-down extracts in 100 µL of ACN:water (e.g., 1:1 v/v). Note: Alternate solvent ratios are possible without impact to the credentialing approach. Changing the ratio to increase ACN or water will simply increase the coverage of organic or watersoluble metabolites, respectively.
- 2. Sonicate briefly the solutions (equates to 40 µL/mg of E. coli extract) then centrifuge (e.g., for 15 min at 13,000 RPM and 4°C) and incubate overnight at 4°C. This results in a clear solution.
- 3. Mix aliquots of the unlabeled and ¹³C-labeled extracts (at 99% isotopic enrichment) into autosampler vials at distinct ratios (e.g., 1:2 and 1:1 v/v). Vortex briefly.
- 4. Load the vials onto an autosampler rack for the benchmarking optimizations.

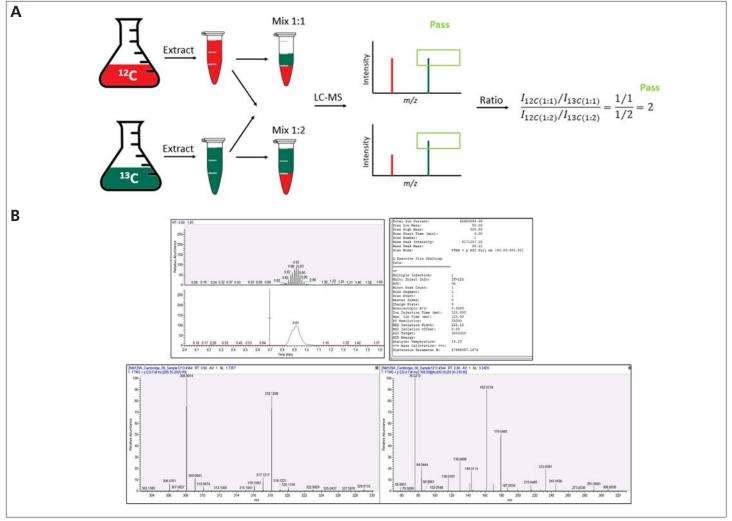


Figure. Credentialing benchmark approach for untargeted metabolomics. A Schematic of the credentialing workflow (abridged from PMID: 25160088) used to discriminate features of biological origin from contaminants and artifacts. The filtering criteria is based on feature ratios, with I being the intensity. B Credentialed metabolite measured on a Q Exactive Plus. Shown are the LC-MS details and spectra for glutathione (C₁₀H₁₇N₃O₆S). The M+0 in the MS survey scan is at m/z 308.0914, while the M+U is at 318.1249.

Example References

Dodds, J.N.; Wang, L.; Patti, G.J.; et al. 2022. Combining isotopologue workflows and simultaneous multidimensional separations to detect, identify, and validate metabolites in untargeted analyses. Anal Chem, 94(5), 2527-2535.

Giné, R.; Capellades, J.; Badia, J.M.; et al. 2021. HERMES: a molecular-formula-oriented method to target the metabolome. Nat Methods, 18(11), 1370-1376.

Cho, K.; Schwaiger-Haber, M.; Naser, F.J.; et al. 2021. Targeting unique biological signals on the fly to improve MS/MS coverage and identification efficiency in metabolomics. Anal Chim Acta, 1149, 338210-338227.

Sindelar, M.; Patti, G.J. 2020. Chemical discovery in the era of metabolomics. J Am Chem Soc, 142(20), 9097-9105.

Wang, L.; Naser, F.J.; Spalding, J.L.; et al. 2019. A protocol to compare methods for untargeted metabolomics. Methods Mol Biol, 1862, 1-15.

Spalding, J.L.; Naser, F.J.; Mahieu, N.G.; et al. 2018. Trace phosphate improves ZIC-pHILIC peak shape, sensitivity, and coverage for untargeted metabolomics. J Proteome Res, 17(10), 3537-3546.

Naser, F.J.; Mahieu, N.G.; Wang, L.; et al. 2018. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Anal Bioanal Chem, 410(4), 1287-1297.

Mahieu, N.G.; Patti, G.J. 2017. Systems-level annotation of a metabolomics data set reduces 25,000 features to fewer than 1,000 unique metabolites. Anal Chem, 89(19),

Benton, H.P.; Ivanisevic, J.; Mahieu, N.G.; et al. 2015. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem, 87(2), 884-891.

Mahieu, N.G.; Huang, X.; Chen, Y.; et al. 2014. Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods. Anal Chem, 86(19), 9583-9589.

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated

IROA® Biochemical Quantitation Kits

IROA's quantitative assay kits can be used to study physiological stressors (such as disease or environmental factors), phenotypically distinct cell lines, biomarkers, systems biology, and flux in a wide variety of cell populations and biological samples (see references below for background and application examples). These kits utilize ¹³C-labeled energy sources at reduced isotopic enrichment (e.g., 95% U-¹³C and 5% U-¹³C D-glucose) in their respective control and experimental populations, which helps with the predictable and distinguishable detection of MS-based isotopic distributions. These distributions can then be used to: (i) differentiate biological signals from artifacts, (ii) calculate accurate molecular formulae, and (iii) determine relative concentrations of the metabolites of biological origin. The details of the metabolic profiling kits (bacterial and mammalian) available off-the-shelf are outlined below. Also specified below is the kit usage specifications, a protocol schematic, and example references.

Click on the thumbnail or visit isotope.com/applications/ for more information

Overview

Catalog No.	Description	Protocol Type	Kit Contents
IROA-200-50	IROA 200 Kit for Bacterial Metabolic Profiling	Basic	 Control medium: M9 minimal medium containing 95% U-¹³C D-glucose Experimental medium: M9 minimal media containing 5% U-¹³C D-glucose Control component mix: 95% U-¹³C amino acids Experimental component mix: 5% U-¹³C amino acids Guides and tools: user manual, ClusterFinder™ software, statistical analysis package
IROA-300-250	IROA 300 Kit for Mammalian Metabolic Profiling	Basic, Phenotypic, or Fluxomic	IROA PHENO-95-300 (for control cell population labeling, see contents below) IROA FLUX-05-300 (for experimental cell population labeling, see contents below) Note: The kits can be used independently (for phenotypic or fluxomic profiling) or combined (for basic profiling).
IROA-PHENO-95-300	IROA 300 Kit for Phenotypic Metabolic Profiling	Phenotypic	Control medium: 95% U-13C D-glucose Control component mix: 95% U-13C amino acid mix and 95% U-13C yeast extract Vitamins: EBSS/RPMI 1640 Guides and tools: user manual, ClusterFinder software, statistical analysis package
IROA-FLUX-05-300	IROA 300 Kit for Fluxomic Metabolic Profiling	Fluxomic	 Experimental medium: 5% U-¹³C D-glucose Experimental component mixes: 5% U-¹³C amino acid mix and 5% U-¹³C yeast extract Vitamins: EBSS/RPMI 1640 Guides and tools: user manual, ClusterFinder software, statistical analysis package

IROA is a registered trademark of IROA Technologies.

Usage Specifications

Kit Materials	Storage	Stability
Liquid media	4°C; protect from light	2 years from date of manufacture
Neat component mixes	-20°C; protect from light	2 years from date of manufacture
Reconstituted component mixes	-20°C; protect from light	1 year

The sample numbers per kit are predicated on the method. Noted here are the minimal number of sample uses based on the method supplied in the user manual. Procedurally for the IROA 300s, this involves a six-well plate growth, 2.5 generations per passage, and 3 mL of media/well, with five cell doublings implemented to ensure full label incorporation.

Kit Type	Implemented Protocol	Minimal No. of Uses
IROA-200-50	Basic	48 (control and experimental samples)
IROA-300-250	Basic	72 (control and experimental samples)
IROA-PHENO-95-300	Phenotypic	72 (control samples)
IROA-FLUX-05-300	Fluxomic	72 (experimental samples)

Companion unlabeled standard mixes and kits may be available; please inquire.

Chemical purity (CP) is 98% or greater, unless otherwise indicated.

Schematic of Protocols

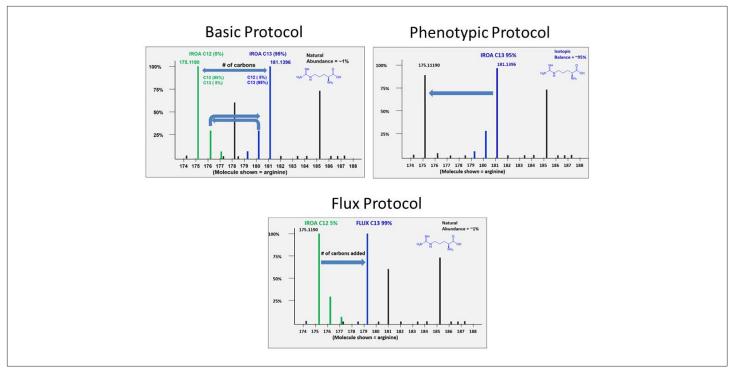


Figure. MS spectra for L-arginine (C₆H₁₄N₄O₂) measured by LC-MS under three types of IROA protocols. Briefly, the cell populations are grown with isotopically labeled carbon sources, which includes D-glucose for: (1) control and experimental samples in the basic protocol, (2) control samples only in the phenotypic protocol, and (3) experimental samples only in the fluxomic protocol (tracers added after harvest at 95 or 99% ¹³C). Note: The control or tracer signals (at 95% ¹³C in basic and phenotypic protocols or 99% ¹³C in flux) are illustrated in blue and the experimental signals (at 5% 13C in basic and flux protocols or natural abundance in phenotypic) in green or black.

Example References

Carey, J; Nguyen, T; Korchak, J.; et al. 2019. An isotopic ratio outlier analysis approach for global metabolomics of biosynthetically talented actinomycetes. Metabolites, 9(9), 181-195

Vlahakis, C.; Hazebroek, J.; Beecher, C.; et al. 2019. Isotopic ratio outlier analysis improves metabolomics prediction of nitrogen treatment in maize. Phytochemistry, 164, 130-135. Rahman, M.A.; Babar, A; Akond, M.; et al. 2017. LC-HRMS Based non-targeted metabolomic profiling of wheat (Triticum aestivum I.) under post-anthesis drought stress. Am J Plant Sci, 8(12), 3024-3061.

Viant, M.R.; Kurland, I.J.; Jones, M.R., et al. 2017. How close are we to complete annotation of metabolomes? Curr Opin Chem Biol, 36, 64-69.

Clendinen, C.S; Stupp, G.S.; Ajredini, R.; et al. 2015. An overview of methods using (13)C for improved compound identification in metabolomics and natural products. Front Plant Sci, 6, 611-624.

Edison, A.S.; Clendinen, C.S.; Ajredini, R.; et al. 2015. Metabolomics and natural-products strategies to study chemical ecology in nematodes. Integr Comp Biol, 55(3), 478-485. de Jong, F.A.; Beecher, C. 2012. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling. Bioanalysis, 4(18), 2303-2314.

PeptiQuant™ Plus Assay Kits

for each kit type are listed in the overview below.

Researchers in academia and life science industries continue to implement a bottom-up MS-based workflow for protein biomarker screening. Biomarker verification/validation requires absolute quantification of surrogate peptides in a sample matrix, a requirement that is best achieved using well-characterized stable isotope-labeled standards. To ensure robust quantitative measurements, QC checks should be routinely performed. CIL offers a collection of PeptiQuant Assay Kits (from MRM Proteomics Inc.) for QC and biomarker assessment using bottom-up LC-MS/MS methodologies. The QC kits are designed to evaluate the performance of an LC-MS platform, either alone or in combination with a human plasma proteomics workflow (see corresponding flyer for panel details). The biomarker assessment kits (BAKs) are intended to help researchers screen target panels of candidate protein disease biomarkers in human or mouse plasma samples (see corresponding flyer for panel details). The current platform-specific offerings

MRM Proteomics mrmproteomics.com

Overview

QC Kits	QC Kits				
Catalog No.	Description	Kit Contents	No. of Peptides	Unit Size	Optimized Instrument
LCMSP-QC	PeptiQuant Plus Human Plasma Daily QC Kit	13C/15N-labeled peptide mix USB (e.g., user manual, acquisition and analysis files)	35	10, 20, or 50 injections	 6490/6495 QqQ QTRAP® 6500 Q Exactive™ Plus
WFPK	PeptiQuant Plus Human Plasma Workflow QC Kit	13C/15N-labeled peptide mix unlabeled peptide mix trypsin BSA human plasma USB (e.g., user manual, acquisition and analysis files)	35	1 or 2 runs	• 6490/6495 QqQ • QTRAP 6500 • Q Exactive Plus

Biomarker As	Biomarker Assessment Kits (BAKs)				
Catalog No.	Description	Kit Contents	No. of Peptides	Unit Size	Optimized Instrument
BAK-125	PeptiQuant Plus Human Plasma Proteomics Kit	13C/15N-labeled peptide mix unlabeled peptide mix trypsin BSA USB (e.g., user manual, acquisition and analysis files)	125	20, 50, or 100 samples	• 6490/6495 QqQ • QTRAP 6500 • Q Exactive Plus • Xevo TQ-XS
M-BAK-125*	PeptiQuant Plus Mouse Plasma Proteomics Kit	13C/15N-labeled peptide mix unlabeled peptide mix trypsin BSA USB (e.g., user manual, acquisition and analysis files)	125	20, 50, or 100 samples	• 6490/6495 QqQ • QTRAP 6500 • Q Exactive Plus • 6545 Q-TOF
BAK-270	Expanded PeptiQuant Plus Human Plasma Proteomics Kit	13C/15N-labeled peptide mix unlabeled peptide mix trypsin BSA USB (e.g., user manual, acquisition and analysis files)	270	100 samples	• 6490/6495 QqQ • QTRAP 6500 • Q Exactive Plus

Click on the thumbnails or visit isotope.com/applications/ for more information

PeptiQuant is a trademark of MRM Proteomics Inc.

Usage Specifications

5 7	
Before reconstitution:	
Storage	-80°C
Recommended retest	6 months from date of manufacture

Note: The dried-down trypsin and BSA materials supplied with the BAKs are not stable at room temperature and must be stored as above. Trypsin is to be prepared immediately prior to use and stored on ice until dispensed.

^{*}Alternate sets of 125 target proteins are available (see PeptiQuant Plus BAK flyer for details).

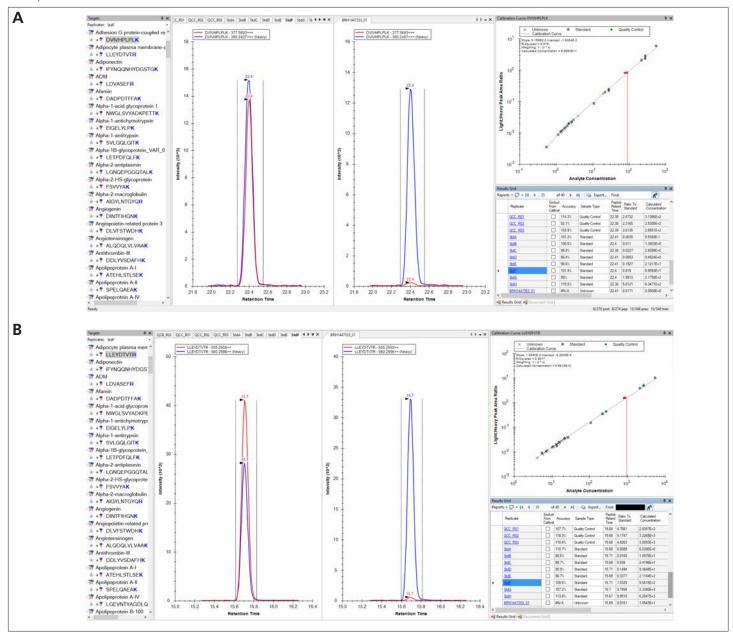


Figure. Bottom-up LC-MRM/MS data for two representative, low abundance targets from a PeptiQuant Plus BAK-270 analysis. Illustrated are Skyline screenshots for peptide DVIVHPLPLK (from Adhesion G protein-coupled receptor F5, gene ADGRF5, UniProtKB Q8IZF2) in **A** and peptide LLEYDTVTR (from Adipocyte plasma membrane-associated protein, gene APMAP, UniProtKB Q9HDC9) in **B**. The tabs refer to the monitored panel, two example XICs (for curve calibrant level F and a pooled human plasma sample analysis), the standard curve (with calibrant levels marked with gray squares, QC samples with green diamonds, experimental sample with red arrow), and the results grid. The protein concentration in the pooled human plasma sample was determined to be 321.2 ng/mL for ADGRF5 and 439.9 ng/mL for APMAP. Results courtesy of MRM Proteomics.

Example References

Percy, A.J.; Borchers, C.H. 2021. Detailed method for performing the ExSTA approach in quantitative bottom-up plasma proteomics. Methods Mol Biol, 2228, 353-384.

Mohammed, Y.; Bhowmick, P.; Michaud, S.A.; et al. **2021**. Mouse Quantitative Proteomics Knowledgebase: reference protein concentration ranges in 20 mouse tissues using 5000 quantitative proteomics assays. *Bioinformatics, in press*.

Ayton, S.; Janelidze, S.; Roberts, B.; et al. 2021. Acute phase markers in CSF reveal inflammatory changes in Alzheimer's disease that intersect with pathology, APOE ε4, sex and age. *Prog Neurobiol, 101904*.

Gaither, C.; Popp, R.; Mohammed, Y.; et al. **2020**. Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. *Analyst*, *145*(10), 3634-3644.

Bhardwaj, M.; Weigl, K.; Tikk, K.; et al. **2020**. Multiplex quantitation of 270 plasma protein markers to identify a signature for early detection of colorectal cancer. *J Cancer, 127,* 30-40.

Michaud, S.A.; Sinclair, N.J.; Petrošová, H.; et al. **2018**. Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays *Commun Biol.* 1. 78.

Orti, V.; Mertens, B.; Vialaret, J.; et al. 2018. Data from a targeted proteomics approach to discover biomarkers in saliva for the clinical diagnosis of periodontitis. Data Brief, 18, 294-299.

Mohammed, Y.; Pan, J.; Zhang, S.; et al. 2018. ExSTA: External standard addition method for accurate high-throughput quantitation in targeted proteomics experiments. Proteomics Clin Appl, 12(2), 1600180.

Application Note

Percy, A.J.; Trouvé, R.; Lehmann, S.; Hirtz, C. Vialaret, J. 2021. Translation and implementation of the PeptiQuant™ Plus Human Plasma BAK-270. (CIL application note #50)

The PeptiQuant Plus Platform Performance Kit has proven to be a vital component of our everyday quality assurance that enables us to deliver high-quality targeted proteomics data in an accurate and timely manner. This kit has a 'dilute and shoot' operation and comes with vendor-specific LC-MRM/MS parameters and a Skyline analysis file for quick input and results output. Altogether, the performance kit is an excellent means to rapidly assess LC-MS performance that should become a routine staple in a proteomic user's toolbox.

Tasso Miliotis, PhD

Associate Principal Scientist at AstraZeneca Gothenburg (Sweden)

PeptiQuant Plus Assay Kits contain all the essential materials, including the standards and methods, for performing absolute protein quantification by LC-MRM/MS in a standardized way. The standard protocol helped us reduce the assay development time, while improve the reproducibility and precision of multiplex protein quantification. In addition to the biomarker assessment kits, the quality control kits enable the instrument performance and assay reproducibility to be monitored and assessed, which ultimately provided us confidence in the reliability of the quantification results.

- Elaine Wong, PhD

Scientific Officer at Queen Mary Hospital, Fu Lam (Hong Kong)

INLIGHT® Glycan Tagging Kit

Glycans participate in a large number of cellular, molecular, and biological processes and are implicated in a number of diseases (e.g., Alzheimer's, cancer). To aid the identification and relative quantification of glycans by LC-MS, CIL offers the innovative INLIGHT® (Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tag) glycan-tagging kit. This kit employs both natural (NAT – 12 C₆) and stable isotope-labeled (SIL – 13 C₆) phenyl 2-GPN reagents in the hydrazide derivatization of free N-glycans. While this tagging strategy was developed for N-glycans, it has also been adapted to sample analysis of O-glycan and heparin oligomer profiles. The INLIGHT kit contains five vials of NAT reagent and five vials of SIL reagent, which in total provides sufficient tagging for approximately 125 relative quantification experiments. The user manual provides step-by-step instructions for executing the modified INLIGHT strategy using maltoheptaose and fetuin A as examples. Data processing and analysis of derivatized glycans can be facilitated in GlycoHunter or Skyline.

isotope.com/applications/ for

Overview

Catalog No.	Description	Kit Contents
GTK-1000	INLIGHT® Glycan Tagging Kit	• Light phenyl 2-GPN INLIGHT reagent (5 × 0.25 mg)
		• Heavy phenyl 2-GPN INLIGHT reagent (13C ₆ ; 5 × 0.25 mg)
		• Unlabeled maltoheptaose (5 × 10 μg)

Usage Specifications

Criteria	Recommendation	
No. of Uses	25 per vial	
Before reconstitution:		
Storage	ambient temperature; protect from light and moisture	
Recommended retest	5 years from date of manufacture	

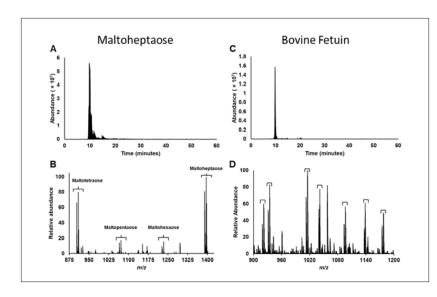


Figure. LC-MS examples of INLIGHT derivatized maltoheptaose and N-linked glycans from bovine fetuin.

- A. Extracted ion chromatogram of [NAT + H]+ maltoheptaose.
- **B**. Mass spectrum at 10 minutes illustrating NAT and SIL derivatized maltoheptaose, maltohexaose, maltopentaose, and maltotetraose.
- **C**. Extracted ion chromatogram of a fetuin-based glycan at m/z 1012.3980 corresponding to [NAT + 2H + (Fuc)₁(Gal)₂(GlcNAc)₄(Man)₃]²⁺.
- D. Average mass spectrum of a fetuin analysis showing the NAT and SIL derivatized N-linked glycan pairs in the LC window 8-11 min.

Example References

Butler, K.E.; Kalmar, J.G.; Muddiman, D.C.; et al. 2022. Utilizing liquid chromatography, ion mobility spectrometry, and mass spectrometry to assess INLIGHT™ derivatized N-linked glycans in biological samples. Anal Bioanal Chem, 414(1), 623-637.

Kalmar, J.G.; Garrard, K.P.; Muddiman, D.C. 2021. GlycoHunter: An open-source software for the detection and relative quantification of INLIGHT®-labeled N-linked glycans. J Proteome Res, 20(4), 1855-1863.

Kalmar, J.G.; Butler, K.E; Baker, E.S.; et al. 2020. Enhanced protocol for quantitative N-linked glycomics analysis using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT).® Anal Bioanal Chem, 412(27), 7569-7579

King, S.R.; Hecht, E.S.; Muddiman, D.C. 2018. Demonstration of hydrazide tagging for O-glycans and a central composite design of experiments optimization using the INLIGHT® reagent. Anal Bioanal Chem, 410(5), 1409-1415.

Loziuk, P.L.; Hecht, E.S.; Muddiman, D.C. 2017. N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa. Anal Bioanal Chem, 409(2), 487-497.

Hecht, E.S.; Scholl, E.H.; Walker, S.H.; et al. 2015. Relative quantification and higher-order modeling of the plasma glycan cancer burden ratio in ovarian cancer case-control samples. J Proteome Res, 14(10), 4394-4401.

Chemical purity (CP) is 98% or greater, unless otherwise indicated.

O&As

Listed below are a series of general Q&As for CIL's mixes and kits. Product-specific FAQs can be located at isotope.com/applications/ under their corresponding product application page (e.g., Metabolic Research \rightarrow Metabolomics Mixtures and Kits \rightarrow QReSS Kits).

What are the advantages of selecting an off-the-shelf mix vs. a collection of individual isotope standards for self-mixing?

The MSK/NSK products are formulated to exacting standards following detailed batch records developed from over 20 years of formulation experience. Following production, randomly selected vials are analyzed to ensure both accuracy and consistency. The astute attention and process control generates exceptional vial-to-vial and lot-to-lot reproducibility. This high reproducibility return is one of the merits of utilizing CIL prepared mixes. Additional advantages are:

- reduced development time and cost;
- enhanced data quality;
- ease of user implementation; and
- improved confidence in analytical results.

The majority of the mixes are ¹³C- and/or ¹⁵N-labeled. What are the advantages of ¹³C/¹⁵N-labeling vs. D-labeled in MS measurements?

The nature of the stable isotope can potentially impact the preanalytical (e.g., storage and handling) and analytical (e.g., sample preparation and processing) phases of an experiment. In comparison to D labels, ¹³C/¹⁵N labels can have:

- improved isotope stability;
- negligible isotope scrambling issues;
- conserved chromatographic elution (relative to its unlabeled standard); and
- · heightened analytical reliability.

In cases where D-labeled compounds were selected, the D-label is located at nonexchangeable positions and was stability tested for preservation as well as product application. For further background, please refer to our **technical note** that describes the benefits of ¹³C vs. D standards in MS-based studies.

How often should QC measurements be performed, and what mixes are most suitable?

Prior to first use, QCs should be conducted several times in succession prior to sample analysis to establish baseline performance and intervention limits. Once established, QCs should be performed routinely (i.e., before, during, and after sample analysis) to monitor the effectiveness of the analytical method and instrument platform over time. While all of CIL's mixes could be used in these types of operations, the ones ideally suited for these type of measurements are the metabolomic QC kits (see MSK-QC-KIT and MSK-QReSS-KIT) and the proteomic QC kits (see PeptiQuant Plus daily and workflow QC kits).

In a targeted quantitative application, how many MRM transitions should be monitored per analyte?

Ideally, a minimum of two MRM transitions per compound (be it metabolite or peptide) should be targeted. This will allow for a quantifier and qualifier(s) assignment, with the ion ratios serving as an additional metric for performance qualification. Nonetheless, this may not be possible for all analytes given the compound's fragmentation chemistry, the employed MS/MS parameters, and the mode of operation utilized. Empirical experiments with isotope-labeled standards should therefore be first performed to optimize the MS/MS parameters prior to conducting the quantitative study with precious experimental samples.

Can custom mixes or add-on vials be formulated?

Yes, we have the ability to customize. We would first review feasibility and then provide a quotation on your specific mix. To start this process, please provide the necessary details on this **custom mix request form** or contact your local sales representative.

Please visit isotope.com for a complete list of isotope-labeled compounds.

Research products are distributed and sold worldwide via our extensive network. CIL's distributor listing is available at isotope.com.

To request a quotation or place an order:

North America: 1.978.749.8000 | 1.800.322.1174 | cilsales@isotope.com

International: +1.978.749.8000 | intlsales@isotope.com

Fax: 1.978.749.2768 | isotope.com

